Topological nodal line semimetal in an orthorhombic graphene network structure
نویسندگان
چکیده
منابع مشابه
Topological nodal-line fermions in spin-orbit metal PbTaSe2
Topological semimetals can support one-dimensional Fermi lines or zero-dimensional Weyl points in momentum space, where the valence and conduction bands touch. While the degeneracy points in Weyl semimetals are robust against any perturbation that preserves translational symmetry, nodal lines require protection by additional crystalline symmetries such as mirror reflection. Here we report, base...
متن کاملTopological semimetal in honeycomb lattice LnSI.
Recognized as elementary particles in the standard model, Weyl fermions in condensed matter have received growing attention. However, most of the previously reported Weyl semimetals exhibit rather complicated electronic structures that, in turn, may have raised questions regarding the underlying physics. Here, we report promising topological phases that can be realized in specific honeycomb lat...
متن کاملWeyl semimetal in a topological insulator multilayer.
We propose a simple realization of the three-dimensional (3D) Weyl semimetal phase, utilizing a multilayer structure, composed of identical thin films of a magnetically doped 3D topological insulator, separated by ordinary-insulator spacer layers. We show that the phase diagram of this system contains a Weyl semimetal phase of the simplest possible kind, with only two Dirac nodes of opposite ch...
متن کاملInsulator to Semimetal Transition in Graphene Oxide
Transport properties of progressively reduced graphene oxide (GO) are described. Evolution of the electronic properties reveals that as-synthesized GO undergoes insulator-semiconductor-semimetal transitions with reduction. The apparent transport gap ranges from 10 to 50 meV and approaches zero with extensive reduction. Measurements at varying degrees of reduction reveal that transport in reduce...
متن کاملTopological crystalline metal in orthorhombic perovskite iridates.
Since topological insulators were theoretically predicted and experimentally observed in semiconductors with strong spin-orbit coupling, increasing attention has been drawn to topological materials that host exotic surface states. These surface excitations are stable against perturbations since they are protected by global or spatial/lattice symmetries. Following the success in achieving variou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review B
سال: 2018
ISSN: 2469-9950,2469-9969
DOI: 10.1103/physrevb.97.245147