Toeplitz Quantization for Non-commutating Symbol Spaces such as SUq(2)

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modulation Spaces as Symbol Classes for Pseudodifferential Operators

We investigate the Weyl calculus of pseudodifferential operators with the methods of time-frequency analysis. As symbol classes we use the modulation spaces, which are the function spaces associated to the short-time Fourier transform and the Wigner distribution. We investigate the boundedness and Schatten-class properties of pseudodifferential operators, and furthermore we study their mapping ...

متن کامل

Non Asymptotic Bounds for Vector Quantization in Hilbert Spaces

Recent results in quantization theory show that the mean-squared expected distortion can reach a rate of convergence of O(1/n), where n is the sample size (see, e.g., [9] or [17]). This rate is attained for the empirical risk minimizer strategy, if the source distribution satis es some regularity conditions. However, the dependency of the average distortion on other parameters is not known, and...

متن کامل

Berezin-toeplitz Quantization over Matrix Domains

We explore the possibility of extending the well-known BerezinToeplitz quantization to reproducing kernel spaces of vector-valued functions. In physical terms, this can be interpreted as accommodating the internal degrees of freedom of the quantized system. We analyze in particular the vectorvalued analogues of the classical Segal-Bargmann space on the domain of all complex matrices and of all ...

متن کامل

Berezin–Toeplitz quantization on Lie groups

Let K be a connected compact semisimple Lie group and KC its complexification. The generalized Segal–Bargmann space for KC, is a space of square-integrable holomorphic functions on KC, with respect to a K-invariant heat kernel measure. This space is connected to the “Schrödinger” Hilbert space L(K) by a unitary map, the generalized Segal–Bargmann transform. This paper considers certain natural ...

متن کامل

Toeplitz Quantization and Asymptotic Expansions: Geometric Construction⋆

For a real symmetric domain GR/KR, with complexification GC/KC, we introduce the concept of “star-restriction” (a real analogue of the “star-products” for quantization of Kähler manifolds) and give a geometric construction of the GR-invariant differential operators yielding its asymptotic expansion.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Mathematics

سال: 2016

ISSN: 2336-1298

DOI: 10.1515/cm-2016-0005