Tits-type Alternative for Groups Acting on Toric Affine Varieties
نویسندگان
چکیده
Given a toric affine algebraic variety $X$ and collection of one-parameter unipotent subgroups $U_1,\ldots,U_s$ $\mathop{\rm Aut}(X)$ which are normalized by the torus acting on $X$, we show that group $G$ generated verifies following alternative Tits' type: either is group, or it contains non-abelian free subgroup. We deduce if $2$-transitive $G$-orbit in then subgroup, so, exponential growth.
منابع مشابه
Tits alternative for 3-manifold groups
Let M be an irreducible, orientable, closed 3-manifold with fundamental group G. We show that if the pro-p completion Ĝp of G is infinite then G is either soluble-by-finite or contains a free subgroup of rank 2.
متن کاملThe Tits alternative for generalised tetrahedron groups
A generalised tetrahedron group is the colimit of a triangle of groups whose vertex groups are generalised triangle groups and whose edge groups are finite cyclic. We prove an improved Spelling Theorem for generalised triangle groups which enables us to compute the precise Gersten-Stallings angles of this triangle of groups, and hence obtain a classification of generalised tetrahedron groups ac...
متن کاملMinicourse on Toric Varieties
1. Varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. Characters and 1-Parameter Subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 3. Toric Varieties . . . . . . . . . . . . . . . . . . . . . . . . . ....
متن کاملLectures on Toric Varieties
1 Four constructions 1 1.1 First construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Second construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Third construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Fourth construction . . . . . . . . . . . . . . . . . . . . . . . . . . ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Mathematics Research Notices
سال: 2021
ISSN: ['1687-0247', '1073-7928']
DOI: https://doi.org/10.1093/imrn/rnaa342