Titanium as a Potential Addition for High-Capacity Hydrogen Storage Medium

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Titanium-decorated carbon nanotubes as a potential high-capacity hydrogen storage medium.

We report a first-principles study, which demonstrates that a single Ti atom coated on a single-walled nanotube (SWNT) binds up to four hydrogen molecules. The first H2 adsorption is dissociative with no energy barrier while the other three adsorptions are molecular with significantly elongated H-H bonds. At high Ti coverage we show that a SWNT can strongly adsorb up to 8 wt % hydrogen. These r...

متن کامل

Hydrogen storage capacity of titanium met-cars

The adsorption of hydrogen molecules on the titanium metallocarbohedryne (met-car) cluster has been investigated by using the first-principles plane wave method. We have found that, while a single Ti atom at the corner can bind up to three hydrogen molecules, a single Ti atom on the surface of the cluster can bind only one hydrogen molecule. Accordingly, a Ti8C12 met-car can bind up to 16 H2 mo...

متن کامل

Transition-metal-ethylene complexes as high-capacity hydrogen-storage media.

From first-principles calculations, we predict that a single ethylene molecule can form a stable complex with two transition metals (TM) such as Ti. The resulting TM-ethylene complex then absorbs up to ten hydrogen molecules, reaching to gravimetric storage capacity of approximately 14 wt %. Dimerization, polymerizations, and incorporation of the TM-ethylene complexes in nanoporous carbon mater...

متن کامل

Metal-diboride nanotubes as high-capacity hydrogen storage media.

We investigate the potential for hydrogen storage of a new class of nanomaterials, metal-diboride nanotubes. These materials have the merits of a high density of binding sites on the tubular surfaces without the adverse effects of metal clustering. Using the TiB2 (8,0) and (5,5) nanotubes as prototype examples, we show through first-principles calculations that each Ti atom can host two intact ...

متن کامل

Electronic structure of aqueous borohydride: a potential hydrogen storage medium.

Borohydride salts have been considered as good prospects for transportable hydrogen storage materials, with molecular hydrogen released via hydrolysis. We examine details of the hydration of sodium borohydride by the combination of X-ray absorption spectroscopy and first principles' theory. Compared to solid sodium borohydride, the aqueous sample exhibits an uncharacteristically narrow absorpti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Nanotechnology

سال: 2012

ISSN: 1687-9503,1687-9511

DOI: 10.1155/2012/831872