TiS3nanoribbons: Width-independent band gap and strain-tunable electronic properties
نویسندگان
چکیده
منابع مشابه
Topological crystalline insulator nanomembrane with strain-tunable band gap
The ability to fine-tune band gap and band inversion in topological materials is highly desirable for the development of novel functional devices. Here we propose that the electronic properties of a free-standing nanomembrane of topological crystalline insulator (TCI) SnTe and Pb1−xSnx(Se,Te) are highly tunable by engineering elastic strain and controlling membrane thickness, resulting in tunab...
متن کاملElectrically tunable band gap in silicene
We report calculations of the electronic structure of silicene and the stability of its weakly buckled honeycomb lattice in an external electric field oriented perpendicular to the monolayer of Si atoms. The electric field produces a tunable band gap in the Dirac-type electronic spectrum, the gap being suppressed by a factor of about eight by the high polarizability of the system. At low electr...
متن کاملStrain-tunable Photonic Band Gap Microcavity Waveguides in Silicon at 1.55 μm
The majority of photonic crystals developed till-date are not dynamically tunable, especially in silicon-based structures. Dynamic tunability is required not only for reconfiguration of the optical characteristics based on user-demand, but also for compensation against external disturbances and relaxation of tight device fabrication tolerances. Recent developments in photonic crystals have sugg...
متن کاملStrain-tunable Photonic Band Gap Microcavity Waveguides at 1.55 μm Personnel
Concept and Key Idea Photonic-bandgap microcavities in optical waveguides have demonstrated cavity resonances at wavelengths near 1.55 μm band, quality factors on the order of 300, and modal volume at 0.055 μm3 in high-index contrast Si/SiO2 waveguides and GaAs air-bridge waveguides. Applications include zero-threshold microlasers, filters and signal routers. For tunability in Si microphotonic ...
متن کاملTunable and sizable band gap in silicene by surface adsorption
Opening a sizable band gap without degrading its high carrier mobility is as vital for silicene as for graphene to its application as a high-performance field effect transistor (FET). Our density functional theory calculations predict that a band gap is opened in silicene by single-side adsorption of alkali atom as a result of sublattice or bond symmetry breaking. The band gap size is controlla...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review B
سال: 2015
ISSN: 1098-0121,1550-235X
DOI: 10.1103/physrevb.92.075413