Tingley's problem for $p$-Schatten von Neumann classes
نویسندگان
چکیده
منابع مشابه
Schur multiplier projections on the von Neumann-Schatten classes
For 1 ≤ p < ∞ let Cp denote the usual von Neumann-Schatten ideal of compact operators on 2. The standard basis of Cp is a conditional one and so it is of interest to be able to identify the sets of coordinates for which the corresponding projection is bounded. In this paper we survey and extend the known classes of bounded projections of this type. In particular we show that some recent results...
متن کاملLower Bounds for Eigenvalues of Schatten-von Neumann Operators
Let Sp be the Schatten-von Neumann ideal of compact operators equipped with the norm Np(·). For an A ∈ Sp (1 < p <∞), the inequality [ ∞ ∑ k=1 |Reλk(A)| ] 1 p + bp [ ∞ ∑ k=1 | Imλk(A)| ] 1 p ≥ Np(AR)− bpNp(AI) (bp = const. > 0) is derived, where λj(A) (j = 1, 2, . . . ) are the eigenvalues of A, AI = (A − A∗)/2i and AR = (A + A∗)/2. The suggested approach is based on some relations between the ...
متن کاملThree observations regarding Schatten p classes ∗
The paper contains three results, the common feature of which is that they deal with the Schatten p class. The first is a presentation of a new complemented subspace of Cp in the reflexive range (and p ̸= 2). This construction answers a question of Arazy and Lindestrauss from 1975. The second result relates to tight embeddings of finite dimensional subspaces of Cp in C n p with small n and shows...
متن کاملThe classification problem for von Neumann factors
We prove that it is not possible to classify separable von Neumann factors of types II1, II∞ or IIIλ, 0 ≤ λ ≤ 1, up to isomorphism by a Borel measurable assignment of “countable structures” as invariants. In particular the isomorphism relation of type II1 factors is not smooth. We also prove that the isomorphism relation for von Neumann II1 factors is analytic, but is not Borel.
متن کاملContinuity and Schatten–von Neumann Properties for Pseudo–Differential Operators and Toeplitz operators on Modulation Spaces
Let M (ω) be the modulation space with parameters p, q and weight function ω. We prove that if p1 = p2, q1 = q2, ω1 = ω0ω and ω2 = ω0, and ∂ a/ω0 ∈ L ∞ for all α, then the Ψdo at(x,D) : M p1,q1 (ω1) → M22 (ω2) is continuous. If instead a ∈ M p,q (ω) for appropriate p, q and ω, then we prove that the map here above is continuous, and if in addition pj = qj = 2, then we prove that at(x,D) is a Sc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Spectral Theory
سال: 2020
ISSN: 1664-039X
DOI: 10.4171/jst/313