Time-Space Fractional Diffusion Problems: Existence, Decay Estimates and Blow-Up of Solutions

نویسندگان

چکیده

Abstract The aim of this paper is to study the following time-space fractional diffusion problem $$\begin{aligned} {\left\{ \begin{array}{ll} \displaystyle \partial _t^\beta u+(-\Delta )^\alpha u=\lambda f(x,u) +g(x,t) &{}\text{ in } \Omega \times {\mathbb {R}}^{+},\\ u(x,t)=0\ \ ({\mathbb {R}}^N{\setminus }\Omega )\times {R}}^+,\\ u(x,0)=u_0(x)\ ,\\ \end{array}\right. \end{aligned}$$ ∂ t β u + ( - Δ ) α = λ f x , g in Ω × R 0 N \ where $$\Omega \subset {R}}^N$$ ⊂ a bounded domain with Lipschitz boundary, $$(-\Delta )^{\alpha }$$ Laplace operator $$0<\alpha <1$$ < 1 , $$\partial _t^{\beta Riemann-Liouville time derivative $$0<\beta $$\lambda $$ positive parameter, $$f:\Omega {R}}\rightarrow {R}}$$ : → continuous function, and $$g\in L^2(0,\infty ;L^2(\Omega ))$$ ∈ L 2 ∞ ; . Under natural assumptions, global local existence solutions are obtained by applying Galerkin method. Then, virtue differential inequality technique, we give decay estimate solutions. Moreover, blow-up property also investigated.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence of solutions of boundary value problems for Caputo fractional differential equations on time scales

‎In this paper‎, ‎we study the boundary-value problem of fractional‎ ‎order dynamic equations on time scales‎, ‎$$‎ ‎^c{Delta}^{alpha}u(t)=f(t,u(t)),;;tin‎ ‎[0,1]_{mathbb{T}^{kappa^{2}}}:=J,;;1

متن کامل

Global Existence, Exponential Decay and Blow-Up of Solutions for a Class of Fractional Pseudo-Parabolic Equations with Logarithmic Nonlinearity

In this paper, we study the fractional pseudo-parabolic equations ut +(−4) u+(−4) ut = u log |u|. Firstly, we recall the relationship between the fractional Laplace operator (−4) and the fractional Sobolev space H and discuss the invariant sets and the vacuum isolating behavior of solutions with the help of a family of potential wells. Then, we derive a threshold result of existence of global w...

متن کامل

Global Existence and Blow-Up Solutions and Blow-Up Estimates for Some Evolution Systems with p-Laplacian with Nonlocal Sources

This paper deals with p-Laplacian systems ut − div(|∇u|p−2∇u) = ∫ Ωv α(x, t)dx, x ∈Ω, t > 0, vt − div(|∇v|q−2∇v) = ∫ Ωu β(x, t)dx, x ∈ Ω, t > 0, with null Dirichlet boundary conditions in a smooth bounded domain Ω ⊂ RN , where p,q ≥ 2, α,β ≥ 1. We first get the nonexistence result for related elliptic systems of nonincreasing positive solutions. Secondly by using this nonexistence result, blow ...

متن کامل

Solutions of Fractional Diffusion Problems

Using the concept of majorant functions, we prove the existence and uniqueness of holomorphic solutions to nonlinear fractional diffusion problems. The analytic continuation of these solutions is studied and the singularity for two cases are posed.

متن کامل

Decay estimates of solutions to the IBq equation

‎In this paper we focus on the Cauchy problem for the generalized‎ ‎IBq equation with damped term in $n$-dimensional space‎. ‎We establish the global existence and decay estimates of solution with $L^q(1leq qleq 2)$ initial value‎, ‎provided that the initial value is suitably small‎. ‎Moreover‎, ‎we also show that the solution is asymptotic to the solution $u_L$ to the corresponding linear equa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Milan Journal of Mathematics

سال: 2022

ISSN: ['1424-9286', '1424-9294']

DOI: https://doi.org/10.1007/s00032-021-00348-5