Time series prediction with improved neuro-endocrine model

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spline-based neuro-fuzzy Kolmogorov's network for time series prediction

A spline-based modification of the previously developed Neuro-Fuzzy Kolmogorov's Network (NFKN) is proposed. In order to improve the approximation accuracy, cubic B-splines are substituted for triangular membership functions. The network is trained with a hybrid learning rule combining least squares estimation for the output layer and gradient descent for the hidden layer. The initialization of...

متن کامل

Improved Time Series Prediction and Symbolic Regression with Affine Arithmetic

We show how affine arithmetic can be used to improve both the performance and the robustness of genetic programming for problems such as symbolic regression and time series prediction. Affine arithmetic is used to estimate conservative bounds on the output range of expressions during evolution, which allows us to discard trees with potentially infinite bounds, as well as those whose output rang...

متن کامل

Time Series Model for Bankruptcy Prediction via Adaptive Neuro- Fuzzy Inference System

Bankruptcy prediction has been addressed by many researchers in the field of finance since few decades. One of the best approaches to deal with this issue is considering it as a classification problem. In this paper a time series prediction model of bankruptcy via Adaptive neuro-fuzzy inference system (ANFIS) is formulated, which is capable of predicting the bankruptcy of a firm for any future ...

متن کامل

Semiparametric Bootstrap Prediction Intervals in time Series

One of the main goals of studying the time series is estimation of prediction interval based on an observed sample path of the process. In recent years, different semiparametric bootstrap methods have been proposed to find the prediction intervals without any assumption of error distribution. In semiparametric bootstrap methods, a linear process is approximated by an autoregressive process. The...

متن کامل

Time Prediction Using a Neuro-Fuzzy Model for Projects in the Construction Industry

This paper presents a prediction model based on a new neuro-fuzzy algorithm for estimating time in construction projects. The output of the proposed prediction model, which is employed based on a locally linear neuro-fuzzy (LLNF) model, is useful for assessing a project status at different time horizons. Being trained by a locally linear model tree (LOLIMOT) learning algorithm, the model is int...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Neural Computing and Applications

سال: 2013

ISSN: 0941-0643,1433-3058

DOI: 10.1007/s00521-013-1373-3