Time-resolved local strain tracking microscopy for cell mechanics
نویسندگان
چکیده
منابع مشابه
Time-resolved fluorescence microscopy.
In fluorescence microscopy, the fluorescence emission can be characterised not only by intensity and position, but also by lifetime, polarization and wavelength. Fluorescence lifetime imaging (FLIM) can report on photophysical events that are difficult or impossible to observe by fluorescence intensity imaging, and time-resolved fluorescence anisotropy imaging (TR-FAIM) can measure the rotation...
متن کاملDeep Learning of Atomically Resolved Scanning Transmission Electron Microscopy Images: Chemical Identification and Tracking Local Transformations.
Recent advances in scanning transmission electron and scanning probe microscopies have opened exciting opportunities in probing the materials structural parameters and various functional properties in real space with angstrom-level precision. This progress has been accompanied by an exponential increase in the size and quality of data sets produced by microscopic and spectroscopic experimental ...
متن کاملTime-resolved tympanal mechanics of the locust.
A salient characteristic of most auditory systems is their capacity to analyse the frequency of sound. Little is known about how such analysis is performed across the diversity of auditory systems found in animals, and especially in insects. In locusts, frequency analysis is primarily mechanical, based on vibrational waves travelling across the tympanal membrane. Different acoustic frequencies ...
متن کاملInvestigating cell mechanics with atomic force microscopy.
Transmission of mechanical force is crucial for normal cell development and functioning. However, the process of mechanotransduction cannot be studied in isolation from cell mechanics. Thus, in order to understand how cells 'feel', we must first understand how they deform and recover from physical perturbations. Owing to its versatility, atomic force microscopy (AFM) has become a popular tool t...
متن کاملMapping the local organization of cell membranes using excitation-polarization-resolved confocal fluorescence microscopy.
Fluorescence anisotropy and linear dichroism imaging have been widely used for imaging biomolecular orientational distributions in protein aggregates, fibrillar structures of cells, and cell membranes. However, these techniques do not give access to complete orientational order information in a whole image, because their use is limited to parts of the sample where the average orientation of mol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Review of Scientific Instruments
سال: 2016
ISSN: 0034-6748,1089-7623
DOI: 10.1063/1.4941715