Time-Integration Schemes for the Finite Element Dynamic Signorini Problem
نویسندگان
چکیده
منابع مشابه
Time-Integration Schemes for the Finite Element Dynamic Signorini Problem
The discretization of the dynamic Signorini problem with finite elements in space and a time-stepping scheme is not straightforward. Consequently a large variety of methods for this problem have been designed over the last two decades. Up to date, no systematic comparison of such methods has been performed. The aim of the present work is to classify and compare them. For each method, we discuss...
متن کاملHybrid finite element methods for the Signorini problem
We study three mixed linear finite element methods for the numerical simulation of the two-dimensional Signorini problem. Applying Falk’s Lemma and saddle point theory to the resulting discrete mixed variational inequality allows us to state the convergence rate of each of them. Two of these finite elements provide optimal results under reasonable regularity assumptions on the Signorini solutio...
متن کاملQuadratic finite element approximation of the Signorini problem
Applying high order finite elements to unilateral contact variational inequalities may provide more accurate computed solutions, compared with linear finite elements. Up to now, there was no significant progress in the mathematical study of their performances. The main question is involved with the modeling of the nonpenetration Signorini condition on the discrete solution along the contact reg...
متن کاملA numerical study on continuous space-time Finite Element Methods for dynamic Signorini problems
Space-time nite element methods for dynamic Signorini problems are discussed in this article. The discretization scheme is based on a mixed space-time formulation of the continuous problem, where the Lagrange multipliers represent the contact stress. To construct the trial space for the displacement and the velocity, we use piecewise polynomial and globally continuous basis functions in space a...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Scientific Computing
سال: 2011
ISSN: 1064-8275,1095-7197
DOI: 10.1137/100791440