Time-dependent orbital-free density functional theory: Background and Pauli kernel approximations

نویسندگان

چکیده

Time-dependent orbital-free DFT is an efficient method for calculating the dynamic properties of large scale quantum systems due to low computational cost compared standard time-dependent DFT. We formalize this by mapping real system interacting fermions onto a fictitious non-interacting bosons. The Pauli potential and associated kernel emerge as key ingredients time-tependent Using uniform electron gas model system, we derive approximate frequency-dependent kernel. Pilot calculations suggest that space nonlocality feature Nonlocal terms arise already in second order expansion with respect unitless frequency reciprocal variable ($\frac{\omega}{q\, k_F}$ $\frac{q}{2\, k_F}$, respectively). Given encouraging performance proposed kernel, expect it will lead more accurate simulations nanoscale out equilibrium. Additionally, path formulate nonadiabatic kernels presents several avenues further improvements which can be exploited future works improve results.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Orbital-corrected orbital-free density functional theory.

A new implementation of density functional theory (DFT), namely orbital-corrected orbital-free (OO) DFT, has been developed. With at most two non-self-consistent iterations, OO-DFT accomplishes the accuracy comparable to fully self-consistent Kohn-Sham DFT as demonstrated by its application on the cubic-diamond Si and the face-centered-cubic Ag systems. Our work provides a new impetus to furthe...

متن کامل

Angular-momentum-dependent orbital-free density functional theory.

Orbital-free (OF) density functional theory (DFT) directly solves for the electron density rather than the wave function of many electron systems, greatly simplifying and enabling large scale first principles simulations. However, the required approximate noninteracting kinetic energy density functionals and local electron-ion pseudopotentials severely restrict the general applicability of conv...

متن کامل

Orbital-free tensor density functional theory.

We propose a family of time-dependent orbital-free density-based theories that go beyond the usual current-density description of electrons or other particles. The theories deal with physical quantities that characterize the one-particle density matrix and consequently the kinetics of the particles. We analyze the first two theories in the family. The "lowest-order" theory is quantum hydrodynam...

متن کامل

Time-dependent density functional theory.

Time-dependent density functional theory (TDDFT) can be viewed as an exact reformulation of time-dependent quantum mechanics, where the fundamental variable is no longer the many-body wave function but the density. This time-dependent density is determined by solving an auxiliary set of noninteracting Schrodinger equations, the Kohn-Sham equations. The nontrivial part of the many-body interacti...

متن کامل

Time-Dependent Density Functional Theory

c 2006 by John von Neumann Institute for Computing Permission to make digital or hard copies of portions of this work for personal or classroom use is granted provided that the copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise requires prior specific permission by the publisher mentio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical review

سال: 2021

ISSN: ['0556-2813', '1538-4497', '1089-490X']

DOI: https://doi.org/10.1103/physrevb.103.245102