Time delay in scattering by potentials and by magnetic fields with two supports at large separation
نویسندگان
چکیده
منابع مشابه
Time Delay in Scattering by Potentials and by Magnetic Fields with Two Supports at Large Separation
We study the asymptotic behavior of the time delay (defined as the trace of the Eisenbud–Wigner time delay operator) for scattering by potential and by magnetic field with two compact supports as the separation of supports goes to infinity. The emphasis is placed on analyzing how different the asymptotic formulae are in potential and magnetic scattering. The difference is proper to scattering i...
متن کاملResonances in scattering by two magnetic fields at large separation and a complex scaling method
Article history: Received 11 December 2012 Accepted 31 January 2014 Available online 4 March 2014 Communicated by Charles Fefferman
متن کاملResonance free regions in magnetic scattering by two solenoidal fields at large separation
We consider the problem of quantum resonances in magnetic scattering by two solenoidal fields at large separation in two dimensions. This system has trapped trajectories oscillating between two centers of the fields. We give a sharp lower bound on resonance widths when the distance between the two centers goes to infinity. The bound is described in terms of backward amplitudes calculated explic...
متن کاملcontrol of the optical properties of nanoparticles by laser fields
در این پایان نامه، درهمتنیدگی بین یک سیستم نقطه کوانتومی دوگانه(مولکول نقطه کوانتومی) و میدان مورد مطالعه قرار گرفته است. از آنتروپی ون نیومن به عنوان ابزاری برای بررسی درهمتنیدگی بین اتم و میدان استفاده شده و تاثیر پارامترهای مختلف، نظیر تونل زنی(که توسط تغییر ولتاژ ایجاد می شود)، شدت میدان و نسبت دو گسیل خودبخودی بر رفتار درجه درهمتنیدگی سیستم بررسی شده اشت.با تغییر هر یک از این پارامترها، در...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 2008
ISSN: 0022-1236
DOI: 10.1016/j.jfa.2007.12.013