Time decay for the nonlinear beam equation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global Solution for the Nonlinear Beam Equation

We prove the existence and uniqueness of global solution for the nonlinear beam equation with initial boundary condition: Q in x f u g t u u M u u ) ( ) ( ) ( ) ( 2 2 2 = ′ + Δ ∇ − Δ + ′ ′ φ α where tt u t x u = ′ ′ ) , ( , t u t x u = ′ ) , ( , 0 > α , φ , , g M is nonlinear functions and Δ is Laplacian in n R .

متن کامل

Positive Solutions for Singular Nonlinear Beam Equation

In paper, we study the existence of solutions for the singular pLaplacian equation` |u′′|p−2u′′ ́′′ − f(t, u) = 0, t ∈ (0, 1) u(0) = u(1) = 0, u′′(0) = u′′(1) = 0, where f(t, u) is singular at t = 0, 1 and at u = 0. We prove the existence of at least one solution.

متن کامل

Nonlinear Beam Equation with Indefinite Damping

We consider the nonlinear beam equation utt + a(x)ut − f(ux)x + uxxxx = 0 in a bounded interval (0, 1) ⊂ R. The equation has an indefinite damping term, i.e., with a damping function a = a(x) possibly changing sign. For this non-dissipative situation we prove the exponential stability of the corresponding linearized system provided ā = ∫ 1 0 a(x)dx > 0 and ‖ a− ā ‖L2≤ τ , for τ small enough. We...

متن کامل

Decay of Mass for Nonlinear Equation with Fractional Laplacian

where the pseudo-differential operator Λ = (−∆)α/2 with 0 < α ≤ 2 is defined by the Fourier transformation: Λ̂αu(ξ) = |ξ|αû(ξ). Moreover, we assume that λ ∈ {−1, 1} and p > 1. Nonlinear evolution problems involving fractional Laplacian describing the anomalous diffusion (or α-stable Lévy diffusion) have been extensively studied in the mathematical and physical literature (see [2, 11, 5] for refe...

متن کامل

Decay and Growth for a Nonlinear Parabolic Difference Equation

We prove a difference equation analogue of the decay-of-mass result for the nonlinear parabolic equation ut = ∆u+ μ|∇u| when μ < 0, and a new growth result when μ > 0.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Methods and Applications of Analysis

سال: 2000

ISSN: 1073-2772,1945-0001

DOI: 10.4310/maa.2000.v7.n3.a5