Tight Bounds for the Subspace Sketch Problem with Applications

نویسندگان

چکیده

In the subspace sketch problem one is given an $n \times d$ matrix $A$ with $O(\log(nd))$ bit entries, and would like to compress it in arbitrary way build a small space data structure $Q_p$, so that for any $x \in \mathbb{R}^d$, probability at least 2/3, has $Q_p(x) = (1 \pm \varepsilon) \|Ax\|_p$, where $p \geq 0$ randomness over construction of $Q_p$. The central question is, how many bits are necessary store $Q_p$? This applications communication approximating number nonzeros product, size coresets projective clustering, memory streaming algorithms regression row-update model, embedding subspaces $L_p$ functional analysis. A major open dependence on approximation factor $\varepsilon$. We show if not positive even integer $d \Omega(\log(1/\varepsilon))$, then $\widetilde{\Omega}(\varepsilon^{-2} d)$ necessary. On other hand, $p$ integer, there upper bound $O(d^p \log(nd))$ independent Our results optimal up logarithmic factors. As corollaries our main lower bound, we obtain new bounds wide range applications, including above, which cases optimal.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tight Bounds for $\ell_p$ Oblivious Subspace Embeddings

An lp oblivious subspace embedding is a distribution over r × n matrices Π such that for any fixed n× d matrix A, Pr Π [for all x, ‖Ax‖p ≤ ‖ΠAx‖p ≤ κ‖Ax‖p] ≥ 9/10, where r is the dimension of the embedding, κ is the distortion of the embedding, and for an n-dimensional vector y, ‖y‖p = ( ∑n i=1 |yi|) 1/p is the lp-norm. Another important property is the sparsity of Π, that is, the maximum numbe...

متن کامل

Secure Sketch Metamorphosis: Tight Unified Bounds

A noisy non-uniformly distributed secret often needs to be transformed into a stable high-entropy key. Biometric systems and physically unclonable functions (PUFs) exemplify the need for this conversion. Secure sketches are a useful tool hereby as they alleviate the noisiness while keeping the corresponding min-entropy loss to a minimum. The novelty of our work is twofold. First, seven secure s...

متن کامل

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

Tight lower bounds for online labeling problem

We consider the file maintenance problem (also called the online labeling problem) in which n integer items from the set {1, . . . , r} are to be stored in an array of size m ≥ n. The items are presented sequentially in an arbitrary order, and must be stored in the array in sorted order (but not necessarily in consecutive locations in the array). Each new item must be stored in the array before...

متن کامل

Tight lower bounds for the asymmetric k-center problem

In the k-center problem, the input is a bound k and n points with the distance between every two of them, such that the distances obey the triangle inequality. The goal is to choose a set of k points to serve as centers, so that the maximum distance from the centers C to any point is as small as possible. This fundamental facility location problem is NP-hard. The symmetric case is well-understo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Computing

سال: 2021

ISSN: ['1095-7111', '0097-5397']

DOI: https://doi.org/10.1137/20m1311831