Threshold Ramsey multiplicity for paths and even cycles

نویسندگان

چکیده

The Ramsey number r(H) of a graph H is the minimum integer n such that any two-coloring edges complete Kn contains monochromatic copy H. While this definition only asks for single H, it often case every two-edge-coloring on vertices many copies over all two-colorings Kr(H) will be referred to as threshold multiplicity Addressing problem Harary and Prins, who were first systematically study quantity, we show there positive constant c path or an even cycle k at least (ck)k. This bound tight up c. We prove similar result odd cycles in companion paper.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multicolor Ramsey Numbers for Paths and Cycles

For given graphs G1, G2, . . . , Gk, k ≥ 2, the multicolor Ramsey number R(G1, G2, . . . , Gk) is the smallest integer n such that if we arbitrarily color the edges of the complete graph on n vertices with k colors, then it is always a monochromatic copy of some Gi, for 1 ≤ i ≤ k. We give a lower bound for k-color Ramsey number R(Cm, Cm, . . . , Cm), where m ≥ 8 is even and Cm is the cycle on m...

متن کامل

Degree Ramsey numbers for even cycles

Let H s − → G denote that any s-coloring of E(H) contains a monochromatic G. The degree Ramsey number of a graph G, denoted by R∆(G, s), is min{∆(H) : H s − → G}. We consider degree Ramsey numbers where G is a fixed even cycle. Kinnersley, Milans, and West showed that R∆(C2k, s) ≥ 2s, and Kang and Perarnau showed that R∆(C4, s) = Θ(s 2). Our main result is that R∆(C6, s) = Θ(s 3/2) and R∆(C10, ...

متن کامل

On the Multi-Colored Ramsey Numbers of Paths and Even Cycles

In this paper we improve the upper bound on the multi-color Ramsey numbers of paths and even cycles.

متن کامل

New Lower Bound for Multicolor Ramsey Numbers for Even Cycles

For given finite family of graphs G1, G2, . . . , Gk, k ≥ 2, the multicolor Ramsey number R(G1, G2, . . . , Gk) is the smallest integer n such that if we arbitrarily color the edges of the complete graph on n vertices with k colors then there is always a monochromatic copy of Gi colored with i, for some 1 ≤ i ≤ k. We give a lower bound for k−color Ramsey number R(Cm, Cm, . . . , Cm), where m ≥ ...

متن کامل

Multicolor Ramsey numbers for some paths and cycles

We give the multicolor Ramsey number for some graphs with a path or a cycle in the given sequence, generalizing a results of Faudree and Schelp [4], and Dzido, Kubale and Piwakowski [2, 3].

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: European Journal of Combinatorics

سال: 2023

ISSN: ['1095-9971', '0195-6698']

DOI: https://doi.org/10.1016/j.ejc.2022.103612