Three-dimensional scattering and the Heisenberg inequality

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Heisenberg-weyl Inequality

In 1927, W. Heisenberg demonstrated the impossibility of specifying simultaneously the position and the momentum of an electron within an atom.The well-known second moment Heisenberg-Weyl inequality states: Assume that f : R → C is a complex valued function of a random real variable x such that f ∈ L(R). Then the product of the second moment of the random real x for |f | and the second moment o...

متن کامل

A Stochastic Heisenberg Inequality

An analogue of the Fourier transform will be introduced for all square integrable continuous martingale processes whose quadratic variation is deterministic. Using this transform we will formulate and prove a stochastic Heisenberg inequality.

متن کامل

Three - Dimensional Electromagnetic Inverse Scattering

A numerical algorithm for the reconstruction of the permittivity of a three-dimensional penetrable object from scattering data is presented. The reconstruction algorithm is based on the local shape function method (LSF) combined with the conjugate gradient method with FFT (CGFFT). The nonlinearity due to the multiple scattering is accounted for in an iterative minimization scheme. Numerical exa...

متن کامل

Nonmagnetic impurities in two- and three-dimensional Heisenberg antiferromagnets.

In this paper we study in a large-S expansion effects of substituting spins by non-magnetic impurities in twoand threedimensional Heisenberg antiferromagnets in a weak magnetic field. In particular, we demonstrate a novel mechanism where magnetic moments are induced around non-magnetic impurities when magnetic field is present. As a result, Curie-type behaviour in magnetic susceptibility can be...

متن کامل

On the Heisenberg-pauli-weyl Inequality

In 1927, W. Heisenberg demonstrated the impossibility of specifying simultaneously the position and the momentum of an electron within an atom.The following result named, Heisenberg inequality, is not actually due to Heisenberg. In 1928, according to H. Weyl this result is due to W. Pauli.The said inequality states, as follows: Assume thatf : R → C is a complex valued function of a random real ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 1992

ISSN: 0377-0427

DOI: 10.1016/0377-0427(92)90161-p