Three-Bandgap Absolute Quantum Efficiency in GaSb/GaAs Quantum Dot Intermediate Band Solar Cells

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optical Characterization of Quantum Dot Intermediate Band Solar Cells

In this paper we present an optical characterization for quantum dot intermediate band solar cells (QDIBSCs). The cells were developed by growing a stack of ten InAs/GaAs QDs layers between p and n doped GaAs conventional emitters. Electroluminescence, EL, photoreflectance, PR, and transmission electron microscopy, TEM, were applied to the samples in order to test and characterize them opticall...

متن کامل

Intermediate band solar cell with extreme broadband spectrum quantum efficiency.

We report, for the first time, about an intermediate band solar cell implemented with InAs/AlGaAs quantum dots whose photoresponse expands from 250 to ∼6000  nm. To our knowledge, this is the broadest quantum efficiency reported to date for a solar cell and demonstrates that the intermediate band solar cell is capable of producing photocurrent when illuminated with photons whose energy equals t...

متن کامل

Quantum Dot Solar Cells

Advanced concepts for high efficiency solar cells such as hot carrier effects, Multi-Exciton Generation (MEG), and Intermediate-Band (IB) absorption in low-dimensional nanostructures are under focused research topics in recent years. Among various potential approaches, this chapter is devoted to the device physics and development of the state-of-the-art technologies for quantum dot-based IB sol...

متن کامل

Control of hot-carrier relaxation for realizing ideal quantum-dot intermediate-band solar cells

For intermediate-band solar cells, the broad absorption spectrum of quantum dots (QDs) offers a favorable conversion efficiency, and photocurrent generation via efficient two-step two-photon-absorption (TS-TPA) in QDs is essential for realizing high-performance solar cells. In the last decade, many works were dedicated to improve the TS-TPA efficiency by modifying the QD itself, however, the ob...

متن کامل

Quantum Dot Solar Cells: Preprint

Quantum dot (QD) solar cells have the potential to increase the maximum attainable thermodynamic conversion efficiency of solar photon conversion up to about 66% by utilizing hot photogenerated carriers to produce higher photovoltages or higher photocurrents. Three quantum dot solar cell configurations are described.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Journal of Photovoltaics

سال: 2017

ISSN: 2156-3381,2156-3403

DOI: 10.1109/jphotov.2016.2637658