Third-order functionals on partial combinatory algebras

نویسندگان

چکیده

Computability relative to a partial function f on the natural numbers can be formalized using notion of an oracle for this f. This generalized arbitrary combinatory algebras, yielding ‘adjoining algebra A’. A similar construction is known second-order functionals, but third-order case more difficult. In paper, we prove several results case. Given functional Φ A, show how construct A[Φ] where ‘computable’, and which has ‘lax’ factorization property (Theorem 7.3 below). Moreover, that, level first-order functions, effect making computable described as adding function.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Collapsing Partial Combinatory Algebras

Partial combinatory algebras occur regularly in the literature as a framework for an abstract formulation of computation theory or re-cursion theory. In this paper we develop some general theory concerning homomorphic images (or collapses) of pca's, obtained by identiication of elements in a pca. We establish several facts concerning nal collapses (maximal identiication of elements). `En passan...

متن کامل

Extending partial combinatory algebras

We give a negative answer to the question whether every partial combinatory algebra can be completed. The explicit counterexample will be an intricately constructed term model, the construction and the proof that it works heavily depending on syntactic techniques. In particular, it is a nice example of reasoning with elementary diagrams and descendants. We also include a domain-theoretic proof ...

متن کامل

Limiting partial combinatory algebras

We $\mathrm{w}\mathrm{i}\mathrm{u}$ construct from every partial

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annals of Pure and Applied Logic

سال: 2023

ISSN: ['0168-0072', '1873-2461']

DOI: https://doi.org/10.1016/j.apal.2022.103205