Thermophoresis and Brownian Effect for Chemically Reacting Magneto-Hydrodynamic Nanofluid Flow across an Exponentially Stretching Sheet

نویسندگان

چکیده

This comparative research investigates the influence of a flexible magnetic flux and chemical change on freely fluid motion (MHD) magneto hydrodynamic boundary layer incompressible nanofluid across an exponentially expanding sheet. Water ethanol are used for this analysis. The temperature transmission improvement fluids is described using Buongiorno model, which includes Brownian movement thermophoretic distribution. nonlinear partial differential equalities governing were changed to set standard utilizing certain appropriate similarity transformations. bvp4c algorithm then tackle transformed equations numerically. Fluid slowed by field, but it sped up thermal mass buoyancy forces distribution increases non-dimensional resulting in higher thicker layers. Temperature concentration, other hand, have same trend terms concentration exponent, constraint, reaction constraint. Furthermore, occurrence aided buoyancies, assists enhancement heat wall shear stress, whereas smaller produced first-order lower Schmidt number.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical and Series Solutions for Stagnation-Point Flow of Nanofluid over an Exponentially Stretching Sheet

This investigation is concerned with the stagnation-point flow of nanofluid past an exponentially stretching sheet. The presence of Brownian motion and thermophoretic effects yields a coupled nonlinear boundary-value problem (BVP). Similarity transformations are invoked to reduce the partial differential equations into ordinary ones. Local similarity solutions are obtained by homotopy analysis ...

متن کامل

Three-Dimensional Flow of Nanofluid Induced by an Exponentially Stretching Sheet: An Application to Solar Energy

This work deals with the three-dimensional flow of nanofluid over a bi-directional exponentially stretching sheet. The effects of Brownian motion and thermophoretic diffusion of nanoparticles are considered in the mathematical model. The temperature and nanoparticle volume fraction at the sheet are also distributed exponentially. Local similarity solutions are obtained by an implicit finite dif...

متن کامل

Three-dimensional chemically reacting radiative MHD flow of nanofluid over a bidirectional stretching surface

This study deals with the three-dimensional flow of a chemically reacting magnetohydrodynamic Sisko fluid over a bidirectional stretching surface filled with the ferrous nanoparticles in the presence of non-uniform heat source/sink, nonlinear thermal radiation, and suction/injection. After applying the self-suitable similarity transforms, the nonlinear ordinary differential equations are solved...

متن کامل

Radiative Hydromagnetic Flow of Jeffrey Nanofluid by an Exponentially Stretching Sheet

Two-dimensional hydromagnetic flow of an incompressible Jeffrey nanofluid over an exponentially stretching surface is examined in the present article. Heat and mass transfer analysis is performed in the presence of thermal radiation, viscous dissipation, and Brownian motion and thermophoresis effects. Mathematical modelling of considered flow problem is developed under boundary layer and Rossel...

متن کامل

Boundary layer flow of nanofluid over an exponentially stretching surface

The steady boundary layer flow of nanofluid over an exponential stretching surface is investigated analytically. The transport equations include the effects of Brownian motion parameter and thermophoresis parameter. The highly nonlinear coupled partial differential equations are simplified with the help of suitable similarity transformations. The reduced equations are then solved analytically w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Energies

سال: 2021

ISSN: ['1996-1073']

DOI: https://doi.org/10.3390/en15010143