منابع مشابه
High-temperature thermoelectric transport at small scales: Thermal generation, transport and recombination of minority carriers
Thermoelectric transport in semiconductors is usually considered under small thermal gradients and when it is dominated by the role of the majority carriers. Not much is known about effects that arise under the large thermal gradients that can be established in high-temperature, small-scale electronic devices. Here, we report a surprisingly large asymmetry in self-heating of symmetric highly do...
متن کاملHigh temperature thermoelectric efficiency in Ba8Ga16Ge30
The high thermoelectric figure of merit zT of Ba8Ga16Ge30 makes it one of the best n-type materials for thermoelectric power generation. Here, we describe the synthesis and characterization of a Czochralski pulled single crystal of Ba8Ga16Ge30 and polycrystalline disks. Measurements of the electrical conductivity, Hall effect, specific heat, coefficient of thermal expansion, thermal conductivit...
متن کاملDevelopment of High Temperature Thermoelectric Materials and Fabrication of Devices
Thermo Electric Conversion (TEC) is a technique, where heat is directly converted into electrical energy. Development of thermoelectric materials which operate at temperatures up to 700–900C may be an attractive proposition, due to its potential application to the proposed high temperature nuclear reactors. Technologically important high temperature thermoelectric materials and their prototype ...
متن کاملMeasuring temperature gradients over nanometer length scales.
When a quantum dot is subjected to a thermal gradient, the temperature of electrons entering the dot can be determined from the dot's thermocurrent if the conductance spectrum and background temperature are known. We demonstrate this technique by measuring the temperature difference across a 15 nm quantum dot embedded in a nanowire. This technique can be used when the dot's energy states are se...
متن کاملTime scales for fission at finite temperature
The concept of the ”transient effect” is examined in respect of a ”mean first passage time”. It is demonstrated that the time the fissioning system stays inside the barrier is much larger than suggested by the transient time, and that no enhancement of emission of neutrons over that given by Kramers’ rate formula ought to be considered.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bureau of Standards Journal of Research
سال: 1929
ISSN: 0091-1801
DOI: 10.6028/jres.003.025