Thermally driven molecular linear motors: A molecular dynamics study
نویسندگان
چکیده
منابع مشابه
Thermally driven molecular linear motors: a molecular dynamics study.
We conduct molecular dynamics simulations of a molecular linear motor consisting of coaxial carbon nanotubes with a long outer carbon nanotube confining and guiding the motion of an inner short, capsulelike nanotube. The simulations indicate that the motion of the capsule can be controlled by thermophoretic forces induced by thermal gradients. The simulations find large terminal velocities of 1...
متن کاملMolecular Dynamics of Surface-Moving Thermally Driven Nanocars.
We developed molecular models describing the thermally initiated motion of nanocars, nanosized vehicles composed of two to four spherical fullerene wheels chemically coupled to a planar chassis, on a metal surface. The simulations were aimed at reproducing qualitative features of the experimentally observed migration of nanocars over gold crystals as determined by scanning tunneling microscopy....
متن کاملThird-Generation Light-Driven Symmetric Molecular Motors
Symmetric molecular motors based on two overcrowded alkenes with a notable absence of a stereogenic center show potential to function as novel mechanical systems in the development of more advanced nanomachines offering controlled motion over surfaces. Elucidation of the key parameters and limitations of these third-generation motors is essential for the design of optimized molecular machines b...
متن کاملLight-driven altitudinal molecular motors on surfaces.
A Cu(I)-catalyzed 1,3-dipolar cycloaddition was used to construct a monolayer of an altitudinal molecular motor on quartz and silicon substrates, which represents the fastest light-driven molecular motor, to date, grafted to a solid surface.
متن کاملSelf-assembly driven by molecular motors
The outcome of a self-assembly process is not only determined by the specified connections between building blocks, but also by the means of bringing building blocks into contact and of testing for the formation of an intended connection. Endowing each building block with the ability to actively move overcomes some limitations of diffusion-driven molecular and nanoscale self-assembly by acceler...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of Chemical Physics
سال: 2009
ISSN: 0021-9606,1089-7690
DOI: 10.1063/1.3281642