Thermal and dynamic mechanical behavior of poly(lactic acid) (PLA)‐based electrospun scaffolds for tissue engineering

نویسندگان

چکیده

Electrospun scaffolds can find numerous applications, including biomedical; for example, tissue engineering. Poly-L-lactic acid is considered suitable these but its low-thermal stability and poor mechanical properties limit this polymer use. The aim of work to obtain a modulation the final characteristics such as fibers dimension, wettability, elasticity, resistance rupture through choice polymers be electrospun. Different electrospun containing gelatin, Poly-DL-lactic acid, different percentages cellulose nanocrystals an elastin peptide have been produced. Thermal stability, physical structure, behavior studied. Results suggest that show better thermal than bulk materials; is, with best hydrophilic thermomechanical are samples 3% (wt/wt) CNCs peptide.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrospun nanostructured scaffolds for tissue engineering applications.

Despite being known for decades (since 1934), electrospinning has emerged recently as a very widespread technology to produce synthetic nanofibrous structures. These structures have morphologies and fiber diameters in a range comparable with those found in the extracellular matrix of human tissues. Therefore, nanofibrous scaffolds are intended to provide improved environments for cell attachmen...

متن کامل

Electrospun Scaffolds for Heart Valve Tissue Engineering

INTRODUCTION Heart valve replacements are required for a number of heart diseases and replacements, as well as for both pediatric and adult populations. It is estimated that 2.5% of the population has valvular heart disease [1], and annually, over 250,000 people worldwide receive heart valve replacements [1]. Tissue engineering (TE) strategies hold the most promise for permanently restoring the...

متن کامل

Cellular behavior after mechanical stimulation on biofunctionalized polylactic acid nanofibers for tendon tissue engineering

Recently, tissue engineered solutions have been investigated to cure rotator cuff tears, whose curing is often long and painful. Scaffolds mimicking the natural structure and composition of natural tendons have been found to be a promising alternative. Tendons are typically composed of aligned collagen nanofibers on which tendon cells called tenocytes lay and produce their extracellular matrix....

متن کامل

Electrospun scaffolds for tissue engineering of vascular grafts.

There is a growing demand for off-the-shelf tissue engineered vascular grafts (TEVGs) for the replacement or bypass of damaged arteries in various cardiovascular diseases. Scaffolds from the decellularized tissue skeletons to biopolymers and biodegradable synthetic polymers have been used for fabricating TEVGs. However, several issues have not yet been resolved, which include the inability to m...

متن کامل

Polylactic acid-phosphate glass composite foams as scaffolds for bone tissue engineering.

Phosphate glass (PG) of the composition 0.46(CaO)-0.04(Na(2)O)-0.5(P(2)O(5)) was used as filler in poly-L-lactic acid (PLA) foams developed as degradable scaffolds for bone tissue engineering. The effect of PG on PLA was assessed both in bulk and porous composite foams. Composites with various PG content (0, 5, 10, and 20 wt %) were melt-extruded, and either compression-molded or foamed through...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Applied Polymer Science

سال: 2021

ISSN: ['1097-4628', '0021-8995']

DOI: https://doi.org/10.1002/app.51313