Theoretical Study of Nanoporous Graphene Membranes for Natural Gas Purification
نویسندگان
چکیده
منابع مشابه
Multilayer Nanoporous Graphene Membranes for Water Desalination.
While single-layer nanoporous graphene (NPG) has shown promise as a reverse osmosis (RO) desalination membrane, multilayer graphene membranes can be synthesized more economically than the single-layer material. In this work, we build upon the knowledge gained to date toward single-layer graphene to explore how multilayer NPG might serve as a RO membrane in water desalination using classical mol...
متن کاملa study on thermodynamic models for simulation of 1,3 butadiene purification columns
attempts have been made to study the thermodynamic behavior of 1,3 butadiene purification columns with the aim of retrofitting those columns to more energy efficient separation schemes. 1,3 butadiene is purified in two columns in series through being separated from methyl acetylene and 1,2 butadiene in the first and second column respectively. comparisons have been made among different therm...
Inhibition effect of a non-permeating component on gas permeability of nanoporous graphene membranes.
We identify the inhibition effect of a non-permeating gas component on gases permeating through the nanoporous graphene membranes and reveal its mechanisms from molecular dynamics insights. The membrane separation process involves the gas mixtures of CH4/H2 and CH4/N2 with different partial pressures of the non-permeating gas component (CH4). The results show that the permeance of the H2 and N2...
متن کاملRecent Advances in Nanoporous Membranes for Water Purification
Nanoporous materials exhibit wide applications in the fields of electrocatalysis, nanodevice fabrication, energy, and environmental science, as well as analytical science. In this review, we present a summary of recent studies on nanoporous membranes for water purification application. The types and fabrication strategies of various nanoporous membranes are first introduced, and then the fabric...
متن کاملFluorinated and nanoporous graphene materials as sorbents for gas separations.
The physisorption of gases on surfaces depends on the electrostatic and dispersion interactions with adsorbates. The former can be tuned by introducing charge variations in the material, and the latter can be tuned by chemical substitution. Using atomistic Monte Carlo calculations, the Henry's law constants, and isosteric heats of adsorption of CH(4), CO(2), N(2), O(2), H(2)S, SO(2), and H(2)O ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Sciences
سال: 2018
ISSN: 2076-3417
DOI: 10.3390/app8091547