Theoretical Investigation of Biaxially Tensile-Strained Germanium Nanowires
نویسندگان
چکیده
منابع مشابه
Theoretical Investigation of Biaxially Tensile-Strained Germanium Nanowires
We theoretically investigate highly tensile-strained Ge nanowires laterally on GaSb. Finite element method has been used to simulate the residual elastic strain in the Ge nanowire. The total energy increment including strain energy, surface energy, and edge energy before and after Ge deposition is calculated in different situations. The result indicates that the Ge nanowire on GaSb is apt to gr...
متن کاملTensile-strained germanium microdisk electroluminescence.
We report room temperature electroluminescence of tensile-strained germanium microdisks. The strain is transferred into the microdisks using silicon nitride stressors. Carrier injection is achieved with Schottky contacts on n-type doped germanium. We show that a biaxial tensile-strain up to 0.72% can be transferred by optimizing the carrier injection profile. The transferred strain is measured ...
متن کاملOptical gain in single tensile-strained germanium photonic wire.
We have investigated the optical properties of tensile-strained germanium photonic wires. The photonic wires patterned by electron beam lithography (50 μm long, 1 μm wide and 500 nm thick) are obtained by growing a n-doped germanium film on a GaAs substrate. Tensile strain is transferred in the germanium layer using a Si₃N₄ stressor. Tensile strain around 0.4% achieved by the technique correspo...
متن کاملWater induced electrical hysteresis in germanium nanowires: a theoretical study.
We apply DFT calculations to evaluate the electronic properties of germanium nanowires (GeNWs) upon adsorption of water molecules and reveal the possible causes of the experimentally observed electrical hysteresis in GeNWs based electronic devices. We show that the absorption of water molecules on the GeNW surface would lead to the formation of hydroxyl passivated GeNWs (OH-GeNWs). The first st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nanoscale Research Letters
سال: 2017
ISSN: 1931-7573,1556-276X
DOI: 10.1186/s11671-017-2243-1