Theoretical Aspect of Diagonal Bregman Proximal Methods
نویسندگان
چکیده
منابع مشابه
Proximal Point Methods with Bregman Function on Riemannian Manifolds
We study the proximal point algorithm with Bregman type distance to minimize the problem , , . ) ( min S x to s x f ∈ where S is an open convex subset of a complete simply connected Riemannian manifold M of non positive sectional curvature and f is a convex function in this manifold. Introducing a strong assumption on the geodesic triangle on this manifold we obtain the convergence of the seque...
متن کاملProximal Methods with Bregman Distances to Solve VIP on Hadamard manifolds∗
We present an extension of the proximal point method with Bregman distances to solve Variational Inequality Problems (VIP) on Hadamard manifolds (simply connected finite dimensional Riemannian manifold with nonpositive sectional curvature). Under some natural assumption, as for example, the existence of solutions of the (VIP) and the monotonicity of the multivalued vector field, we prove that t...
متن کاملProximal Point Methods for Quasiconvex and Convex Functions With Bregman Distances on Hadamard Manifolds
This paper generalizes the proximal point method using Bregman distances to solve convex and quasiconvex optimization problems on noncompact Hadamard manifolds. We will proved that the sequence generated by our method is well defined and converges to an optimal solution of the problem. Also, we obtain the same convergence properties for the classical proximal method, applied to a class of quasi...
متن کاملApproximate iterations in Bregman-function-based proximal algorithms
This paper establishes convergence of generalized Bregman-function-based proximal point algorithms when the iterates are computed only approximately. The problem being solved is modeled as a general maximal monotone operator, and need not reduce to minimization of a function. The accuracy conditions on the iterates resemble those required for the classical "linear" proximal point algorithm, but...
متن کاملMultivariate GARCH estimation via a Bregman-proximal trust-region method
The estimation of multivariate GARCH time series models is a difficult task mainly due to the significant overparameterization exhibited by the problem and usually referred to as the “curse of dimensionality”. For example, in the case of the VEC family, the number of parameters involved in the model grows as a polynomial of order four on the dimensionality of the problem. Moreover, these parame...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Mathematics
سال: 2020
ISSN: 1110-757X,1687-0042
DOI: 10.1155/2020/3108056