The within-strip discrete unit disk cover problem
نویسندگان
چکیده
منابع مشابه
The Within-Strip Discrete Unit Disk Cover Problem
We investigate the Within-Strip Discrete Unit Disk Cover problem (WSDUDC), where one wishes to find a minimal set of unit disks from an input set D so that a set of points P is covered. Furthermore, all points and disk centres are located in a strip of height h, defined by a pair of parallel lines. We give a general approximation algorithm which finds a 3d1/ √ 1− h2e-factor approximation to the...
متن کاملOn the Discrete Unit Disk Cover Problem
Given a set P of n points and a set D of m unit disks on a 2-dimensional plane, the discrete unit disk cover (DUDC) problem is (i) to check whether each point in P is covered by at least one disk in D or not and (ii) if so, then find a minimum cardinality subset D∗ ⊆ D such that the unit disks in D∗ cover all the points in P. The discrete unit disk cover problem is a geometric version of the ge...
متن کاملUnit Disk Cover Problem
Given a set D of unit disks in the Euclidean plane, we consider (i) the discrete unit disk cover (DUDC) problem and (ii) the rectangular region cover (RRC) problem. In the DUDC problem, for a given set P of points the objective is to select minimum cardinality subset D∗ ⊆ D such that each point in P is covered by at least one disk in D∗. On the other hand, in the RRC problem the objective is to...
متن کاملA PTAS for the Weighted Unit Disk Cover Problem
We are given a set of weighted unit disks and a set of points in Euclidean plane. The minimum weight unit disk cover (WUDC) problem asks for a subset of disks of minimum total weight that covers all given points. WUDC is one of the geometric set cover problems, which have been studied extensively for the past two decades (for many different geometric range spaces, such as (unit) disks, halfspac...
متن کاملAn Improved Line-Separable Algorithm for Discrete Unit Disk Cover
Given a set D of m unit disks and a set P of n points in the plane, the discrete unit disk cover problem is to select a minimum cardinality subset D′ ⊆ D to cover P. This problem is NP-hard [14] and the best ∗[email protected] †[email protected] ‡[email protected] §[email protected] ¶[email protected] ‖[email protected] ∗∗[email protected] ††[email protected]
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Theoretical Computer Science
سال: 2017
ISSN: 0304-3975
DOI: 10.1016/j.tcs.2017.01.030