The Well-Rounded Linear Function

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Well-Rounded Linear Function

The generic linear function ax + b of a real variable, with a, b, x ∈ R, is usually evaluated as a scale function (product) followed by a translation (sum). Our main result shows that when such a function is variously combined with rounding functions (floor and ceiling), exactly 67 inequivalent rounded generic linear functions result, of which 38 are integer-valued and 29 are not. Several relat...

متن کامل

Well-Rounded Zeta-Function of Planar Arithmetic Lattices

We investigate the properties of the zeta-function of well-rounded sublattices of a fixed arithmetic lattice in the plane. In particular, we show that this function has abscissa of convergence at s = 1 with a real pole of order 2, improving upon a result of [11]. We use this result to show that the number of well-rounded sublattices of a planar arithmetic lattice of index less or equal N is O(N...

متن کامل

On Well-rounded Ideal Lattices

We investigate a connection between two important classes of Euclidean lattices: well-rounded and ideal lattices. A lattice of full rank in a Euclidean space is called well-rounded if its set of minimal vectors spans the whole space. We consider lattices coming from full rings of integers in number fields, proving that only cyclotomic fields give rise to well-rounded lattices. We further study ...

متن کامل

Minimality of the Well-rounded Retract

We prove that the well-rounded retract of SOn \ SLn R is a minimal SLn Z-invariant spine.

متن کامل

Cohomology at Infinity and the Well-rounded Retract for General Linear Groups

(0.1). Let G be a reductive algebraic group defined over Q, and let Γ be an arithmetic subgroup of G(Q). Let X be the symmetric space for G(R), and assume X is contractible. Then the cohomology (mod torsion) of the space X/Γ is the same as the cohomology of Γ. In turn, X/Γ will have the same cohomology as W/Γ, if W is a “spine” in X . This means thatW (if it exists) is a deformation retract ofX...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Electronic Journal of Combinatorics

سال: 2000

ISSN: 1077-8926

DOI: 10.37236/1605