The Value Function with Regret Minimization Algorithm for Solving the Nash Equilibrium of Multi-Agent Stochastic Game
نویسندگان
چکیده
منابع مشابه
the algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولMulti-Agent Planning with Baseline Regret Minimization
We propose a novel baseline regret minimization algorithm for multi-agent planning problems modeled as finite-horizon decentralized POMDPs. It guarantees to produce a policy that is provably at least as good as a given baseline policy. We also propose an iterative belief generation algorithm to efficiently minimize the baseline regret, which only requires necessary iterations so as to converge ...
متن کاملEfficient Nash equilibrium approximation through Monte Carlo counterfactual regret minimization
Recently, there has been considerable progress towards algorithms for approximating Nash equilibrium strategies in extensive games. One such algorithm, Counterfactual Regret Minimization (CFR), has proven to be effective in two-player zero-sum poker domains. While the basic algorithm is iterative and performs a full game traversal on each iteration, sampling based approaches are possible. For i...
متن کاملMulti-Agent Counterfactual Regret Minimization for Partial-Information Collaborative Games
We study the generalization of counterfactual regret minimization (CFR) to partialinformation collaborative games with more than 2 players. For instance, many 4-player card games are structured as 2v2 games, with each player only knowing the contents of their own hand. To study this setting, we propose a multi-agent collaborative version of Kuhn Poker. We observe that a straightforward applicat...
متن کاملA Polynomial-time Nash Equilibrium Algorithm for Repeated Stochastic Games
We present a polynomial-time algorithm that always finds an (approximate) Nash equilibrium for repeated two-player stochastic games. The algorithm exploits the folk theorem to derive a strategy profile that forms an equilibrium by buttressing mutually beneficial behavior with threats, where possible. One component of our algorithm efficiently searches for an approximation of the egalitarian poi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computational Intelligence Systems
سال: 2021
ISSN: 1875-6883
DOI: 10.2991/ijcis.d.210520.001