The unramified Brauer group of homogeneous spaces with finite stabilizer

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Brauer–manin Obstructions for Homogeneous Spaces with Connected or Abelian Stabilizer

In this paper we prove that for a homogeneous space of a connected algebraic group with connected stabilizer and for a homogeneous space of a simply connected group with abelian stabilizer, the Brauer–Manin obstructions to the Hasse principle and weak approximation are the only ones. More precisely, let X be an algebraic variety over a number field k. The variety X is called a counter-example t...

متن کامل

Brauer Equivalence in a Homogeneous Space with Connected Stabilizer

Let G be a simply connected algebraic group over a field k of characteristic 0, H a connected k-subgroup of G, X = H\G. When k is a local field or a number field, we compute the set of Brauer equivalence classes in X(k). 0. Introduction In this note we investigate the Brauer equivalence in a homogeneous space X = H\G, where G is a simply connected algebraic group over a local field or a number ...

متن کامل

Unramified Brauer Groups of Finite and Infinite Groups

The Bogomolov multiplier is a group theoretical invariant isomorphic to the unramified Brauer group of a given quotient space. We derive a homological version of the Bogomolov multiplier, prove a Hopf-type formula, find a five term exact sequence corresponding to this invariant, and describe the role of the Bogomolov multiplier in the theory of central extensions. A new description of the Bogom...

متن کامل

Homogeneous Spaces of the Lorentz Group

We present a classification, up to isomorphisms, of all the homogeneous spaces of the Lorentz group with dimension lower than six. At the same time, we classify, up to conjugation, all the non-discrete closed subgroup of the Lorentz group and all the subalgebras of the Lorentz Lie algebra. We also study the covariant mappings between some pairs of homogeneous spaces. This exercise is done witho...

متن کامل

A classification of finite homogeneous semilinear spaces

A semilinear space S is homogeneous if, whenever the semilinear structures induced on two finite subsets S1 and S2 of S are isomorphic, there is at least one automorphism of S mapping S1 onto S2. We give a complete classification of all finite homogeneous semilinear spaces. Our theorem extends a result of Ronse on graphs and a result of Devillers and Doyen

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 2019

ISSN: 0002-9947,1088-6850

DOI: 10.1090/tran/7796