The trinucleotide repeat sequence d(GTC)15adopts ahairpin conformation
نویسندگان
چکیده
منابع مشابه
The trinucleotide repeat sequence d(GTC)15 adopts a hairpin conformation.
The structure of a single-stranded (ss) oligonucleotide containing (GTC)15 [ss(GTC)15] was examined. As a control, parallel studies were performed with ss(CTG)15, an oligonucleotide that forms a hairpin. Electrophoretic mobility, KMnO4 oxidation and P1 nuclease studies demonstrate that, similar to ss(CTG)15, ss(GTC)15 forms a hairpin containing base paired and/or stacked thymines in the stem. E...
متن کاملNon-coding trinucleotide repeat disorders
| The underlying genetic mutations for many inherited neurodegenerative disorders have been identified in recent years. One frequent type of mutation is trinucleotide repeat expansion. Depending on the location of the repeat expansion, the mutation might result in a loss of function of the disease gene, a toxic gain of function or both. Disease gene identification has led to the development of ...
متن کاملTrinucleotide repeat diseases - antecipation diseases
Dynamic mutations involve expansion of the number of repeat units consisting of three or more nucleotides in tandem (i.e. adjacent to one another) present in a gene or in its neighborhood. These repeats may occur in different genes and may code for different aminoacids. According to expansions sizes, it is possible to have unaffected individuals that are carriers of a pre-mutation. Instability ...
متن کاملThe 26S proteasome drives trinucleotide repeat expansions
Trinucleotide repeat (TNR) expansion is the causative mutation for at least 17 inherited neurological diseases. An important question in the field is which proteins drive the expansion process. This study reports that the multi-functional protein Sem1 is a novel driver of TNR expansions in budding yeast. Mutants of SEM1 suppress up to 90% of expansions. Subsequent analysis showed that Sem1 faci...
متن کاملDNA Methylation and Trinucleotide Repeat Expansion Diseases
DNA methylation of CpG dinucleotides is essential for mammalian development, X inactivation, genomic imprinting, and may also be involved in immobilization of transposons and the control of tissue-specific gene expression (Bird & Wolffe, 1999). The common theme in each of these processes is gene silencing. Therefore, gene silencing is a major biological consequence of DNA methylation. As such, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nucleic Acids Research
سال: 1995
ISSN: 0305-1048,1362-4962
DOI: 10.1093/nar/23.14.2706