The toroidal crossing number of the complete graph

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

META-HEURISTIC ALGORITHMS FOR MINIMIZING THE NUMBER OF CROSSING OF COMPLETE GRAPHS AND COMPLETE BIPARTITE GRAPHS

The minimum crossing number problem is among the oldest and most fundamental problems arising in the area of automatic graph drawing. In this paper, eight population-based meta-heuristic algorithms are utilized to tackle the minimum crossing number problem for two special types of graphs, namely complete graphs and complete bipartite graphs. A 2-page book drawing representation is employed for ...

متن کامل

On the Crossing Number of the Complete Tripartite Graph

Abstract: The well known Zarankiewicz’ conjecture is said that the crossing number of the complete bipartite graph Km,n (m ≤ n) is Z(m, n), where Z(m,n) = ⌊ m 2 ⌋⌊ 2 ⌋⌊ 2 ⌋ ⌊ 2 ⌋ (for any real number x, ⌊x⌋ denotes the maximal integer no more than x). Presently, Zarankiewicz’ conjecture is proved true only for the case m ≤ 6. In this article, the authors prove that if Zarankiewicz’ conjecture h...

متن کامل

The toroidal crossing number of K4, n

In this paper, we study the crossing number of the complete bipartite graph K4,n in torus and obtain crT (K4,n) = ⌊ n 4 ⌋(2n− 4(1 + ⌊ n 4 ⌋)).

متن کامل

Approximating the Crossing Number of Toroidal Graphs

CrossingNumber is one of the most challenging algorithmic problems in topological graph theory, with applications to graph drawing and VLSI layout. No polynomial time approximation algorithm is known for this NP-Complete problem. We give in this paper a polynomial time approximation algorithm for the crossing number of toroidal graphs with bounded degree. In course of proving the algorithm we p...

متن کامل

Crossing Number of Toroidal Graphs

It is shown that if a graph of n vertices can be drawn on the torus without edge crossings and the maximum degree of its vertices is at most d, then its planar crossing number cannot exceed cdn, where c is a constant. This bound, conjectured by Brass, cannot be improved, apart from the value of the constant. We strengthen and generalize this result to the case when the graph has a crossing-free...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory

سال: 1968

ISSN: 0021-9800

DOI: 10.1016/s0021-9800(68)80063-8