The structure of the observable algebra determined by a Hopf *-subalgebra in Hopf spin models

نویسندگان

چکیده

Let H be a finite dimensional Hopf C*-algebra, H1 Hopf*-subalgebra of H. This paper focuses on the observable algebra AH1 determined by in nonequilibrium spin models, which there is copy each lattice site, and ? link, where denotes dual Furthermore, using iterated twisted tensor product +*-algebras, one can prove that algebraAH1 *-isomorphic to C*-inductive limit ... o .

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gorenstein global dimensions for Hopf algebra actions

Let $H$ be a Hopf algebra and $A$ an $H$-bimodule algebra‎. ‎In this paper‎, ‎we investigate Gorenstein global dimensions for Hopf‎ ‎algebras and twisted smash product algebras $Astar H$‎. ‎Results from‎ ‎the literature are generalized‎. 

متن کامل

Hopf Modules and the Double of a Quasi-hopf Algebra

We give a different proof for a structure theorem of Hausser and Nill on Hopf modules over quasi-Hopf algebras. We extend the structure theorem to a classification of two-sided two-cosided Hopf modules by YetterDrinfeld modules, which can be defined in two rather different manners for the quasi-Hopf case. The category equivalence between Hopf modules and Yetter-Drinfeld modules leads to a new c...

متن کامل

The core Hopf algebra

We study the core Hopf algebra underlying the renormalization Hopf algebra.

متن کامل

A Hopf Algebra Structure on Hall Algebras

One problematic feature of Hall algebras is the fact that the standard multiplication and comultiplication maps do not satisfy the bialgebra compatibility condition in the underlying symmetric monoidal category Vect. In the past this problem has been resolved by working with a weaker structure called a ‘twisted’ bialgebra. In this paper we solve the problem differently by first switching to a d...

متن کامل

Hopf Algebra Extensions of Monogenic Hopf Algebras

William M. Singer has described a cohomology theory of connected Hopf algebras which classifies extensions of a cocommutative Hopf algebra by a commutative Hopf algebra in much the same way as the cohomology of groups classifies extensions of a group by an abelian group. We compute these cohomology groups for monogenic Hopf algebras, construct an action of the base ring on the cohomology groups...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Filomat

سال: 2021

ISSN: ['2406-0933', '0354-5180']

DOI: https://doi.org/10.2298/fil2102485w