The structure of Siegel modular forms modulo $p$ and $U(p)$ congruences

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ramanujan Congruences for Siegel Modular Forms

We determine conditions for the existence and non-existence of Ramanujan-type congruences for Jacobi forms. We extend these results to Siegel modular forms of degree 2 and as an application, we establish Ramanujan-type congruences for explicit examples of Siegel modular forms.

متن کامل

SIEGEL MODULAR FORMS ( MOD p ) AND ALGEBRAIC MODULAR FORMS

In his letter [Ser96], J.-P. Serre proves that the systems of Hecke eigenvalues given by modular forms (mod p) are the same as the ones given by locally constant functions A×B/B × → F̄p, where B is the endomorphism algebra of a supersingular elliptic curve. After giving a detailed exposition of Serre’s result, we prove that the systems of Hecke eigenvalues given by Siegel modular forms (mod p) o...

متن کامل

Siegel Modular Forms

These are the lecture notes of the lectures on Siegel modular forms at the Nordfjordeid Summer School on Modular Forms and their Applications. We give a survey of Siegel modular forms and explain the joint work with Carel Faber on vector-valued Siegel modular forms of genus 2 and present evidence for a conjecture of Harder on congruences between Siegel modular forms of genus 1 and 2.

متن کامل

Hecke eigenvalues of Siegel modular forms (mod p) and of algebraic modular forms

In his letter (Serre, 1996), J.-P. Serre proves that the systems of Hecke eigenvalues given by modular forms (mod p) are the same as the ones given by locally constant functions A×B/B × → Fp, where B is the endomorphism algebra of a supersingular elliptic curve. We generalize this result to Siegel modular forms, proving that the systems of Hecke eigenvalues given by Siegel modular forms (mod p)...

متن کامل

Codes and Siegel modular forms

It is proved that the ring of Siegel modular forms in any genus is determined by doubly-even self-dual codes and the theta relations. The (higher) weight polynomials of such codes are proved to be the generators of the ring of invariants of a polynomial ring in 2 g variables under a certain speciied nite group. Moreover codes are uniquely determined by their weight polynomials.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Research Letters

سال: 2015

ISSN: 1073-2780,1945-001X

DOI: 10.4310/mrl.2015.v22.n3.a14