منابع مشابه
The strong nilpotency index of a matrix
It is known that strongly nilpotent matrices over a division ring are linearly triangularizable. We describe the structure of such matrices in terms of the strong nilpotency index. We apply our results on quasi-translation x+H such that JH has strong nilpotency index two.
متن کاملa generalization of strong causality
در این رساله t_n - علیت قوی تعریف می شود. این رده ها در جدول علیت فضا- زمان بین علیت پایدار و علیت قوی قرار دارند. یک قضیه برای رده بندی آنها ثابت می شود و t_n- علیت قوی با رده های علی کارتر مقایسه می شود. همچنین ثابت می شود که علیت فشرده پایدار از t_n - علیت قوی نتیجه می شود. بعلاوه به بررسی رابطه نظریه دامنه ها با نسبیت عام می پردازیم و ثابت می کنیم که نوع خاصی از فضا- زمان های علی پایدار, ب...
The upper bound for the index of nilpotency for a matrix commuting with a given nilpotent matrix
We consider the following problem: What are possible sizes of Jordan blocks for a pair of commuting nilpotent matrices? Or equivalently, for which pairs of nilpotent orbits of matrices (under similarity) there exists a pair of matrices, one from each orbit, that commute. The answer to the question could be considered as a generalization of Gerstenhaber– Hesselink theorem on the partial order of...
متن کاملdeterminant of the hankel matrix with binomial entries
abstract in this thesis at first we comput the determinant of hankel matrix with enteries a_k (x)=?_(m=0)^k??((2k+2-m)¦(k-m)) x^m ? by using a new operator, ? and by writing and solving differential equation of order two at points x=2 and x=-2 . also we show that this determinant under k-binomial transformation is invariant.
15 صفحه اولA Bound for the Nilpotency Class of a Lie Algebra
In the present paper, we prove that if L is a nilpotent Lie algebra whose proper subalge- bras are all nilpotent of class at most n, then the class of L is at most bnd=(d 1)c, where b c denotes the integral part and d is the minimal number of generators of L.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear and Multilinear Algebra
سال: 2013
ISSN: 0308-1087,1563-5139
DOI: 10.1080/03081087.2013.784282