The strong law of large numbers: a weak-$l\sb 2$ view
نویسندگان
چکیده
منابع مشابه
A Note on the Strong Law of Large Numbers
Petrov (1996) proved the connection between general moment conditions and the applicability of the strong law of large numbers to a sequence of pairwise independent and identically distributed random variables. This note examines this connection to a sequence of pairwise negative quadrant dependent (NQD) and identically distributed random variables. As a consequence of the main theorem ...
متن کاملOn the Strong Law of Large Numbers
N lim 1( 1: f(nkx)) = 0, N-N k_l or roughly speaking the strong law of large numbers holds for f(nkx) (in fact the authors prove that Ef(nkx)/k converges almost everywhere) . The question was raised whether (2) holds for any f(x) . This was known for the case nk=2k( 2) . In the present paper it is shown that this is not the case . In fact we prove the following theorem . THEOREM 1 . There exist...
متن کاملMARCINKIEWICZ-TYPE STRONG LAW OF LARGE NUMBERS FOR DOUBLE ARRAYS OF NEGATIVELY DEPENDENT RANDOM VARIABLES
In the following work we present a proof for the strong law of large numbers for pairwise negatively dependent random variables which relaxes the usual assumption of pairwise independence. Let be a double sequence of pairwise negatively dependent random variables. If for all non-negative real numbers t and , for 1 < p < 2, then we prove that (1). In addition, it also converges to 0 in ....
متن کاملAn Exact Weak Law of Large Numbers
This paper explores a Weighted Exact Weak Law, where the classical Weak Law fails and the corresponding Strong Law also fails. This type of result comes from the Fair Games problem and is associated with the St Petersburg Game.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1995
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1995-1213860-x