The Stokes and Poisson problem in variable exponent spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interpolation in Variable Exponent Spaces

In this paper we study both real and complex interpolation in the recently introduced scales of variable exponent Besov and Triebel–Lizorkin spaces. We also take advantage of some interpolation results to study a trace property and some pseudodifferential operators acting in the variable index Besov scale.

متن کامل

Navier-stokes Equations in the Half-space in Variable Exponent Spaces of Clifford-valued Functions

In this article, we study the steady generalized Navier-Stokes equations in a half-space in the setting of variable exponent spaces. We first establish variable exponent spaces of Clifford-valued functions in a half-space. Then, using this operator theory together with the contraction mapping principle, we obtain the existence and uniqueness of solutions to the stationary Navier-Stokes equation...

متن کامل

On Variable Exponent Amalgam Spaces

We derive some of the basic properties of weighted variable exponent Lebesgue spaces L p(.) w (R) and investigate embeddings of these spaces under some conditions. Also a new family of Wiener amalgam spaces W (L p(.) w , L q υ) is defined, where the local component is a weighted variable exponent Lebesgue space L p(.) w (R) and the global component is a weighted Lebesgue space Lυ (R) . We inves...

متن کامل

The Concentration-compactness Principle for Variable Exponent Spaces and Applications

In this paper we extend the well-known concentration – compactness principle of P.L. Lions to the variable exponent case. We also give some applications to the existence problem for the p(x)−Laplacian with critical growth.

متن کامل

Some functional inequalities in variable exponent spaces with a more generalization of uniform continuity condition

‎Some functional inequalities‎ ‎in variable exponent Lebesgue spaces are presented‎. ‎The bi-weighted modular inequality with variable exponent $p(.)$ for the Hardy operator restricted to non‎- ‎increasing function which is‎‎$$‎‎int_0^infty (frac{1}{x}int_0^x f(t)dt)^{p(x)}v(x)dxleq‎‎Cint_0^infty f(x)^{p(x)}u(x)dx‎,‎$$‎ ‎is studied‎. ‎We show that the exponent $p(.)$ for which these modular ine...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Complex Variables and Elliptic Equations

سال: 2011

ISSN: 1747-6933,1747-6941

DOI: 10.1080/17476933.2010.504843