The stability relation between ordinary and delay-integro-differential equations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The stability relation between ordinary and delay-integro-differential equations

This paper deals with the exponential stability of a class of nonlinear delay-integrodifferential equations of the form ẋ(t) = f ( t, x(t), x(t − τ1(t)), ∫ t t−τ2(t) g(t, s, x(s))ds ) , t ≥ t0, where τi(t) > 0 for i = 1, 2 and t ≥ t0. The stability relation between ordinary and delay-integro-differential equations is given. It is shown under some suitable conditions that a delay-integro-differe...

متن کامل

On the Stability of Delay Integro-differential Equations

Some new stability results are given for a delay integro-differential equation. A basis theorem on the behavior of solutions of delay integro-differential equations is established. As a consequence of this theorem, a stability criterion is obtained.

متن کامل

Stability properties of second order delay integro-differential equations

A basic theorem on the behavior of solutions of scalar linear second order delay integro-differential equations is established. As a consequence of this theorem, a stability criterion is obtained.

متن کامل

A numerical method for solving delay-fractional differential and integro-differential equations

‎This article develops a direct method for solving numerically‎ ‎multi delay-fractional differential and integro-differential equations‎. ‎A Galerkin method based on Legendre polynomials is implemented for solving‎ ‎linear and nonlinear of equations‎. ‎The main characteristic behind this approach is that it reduces such problems to those of‎ ‎solving a system of algebraic equations‎. ‎A conver...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical and Computer Modelling

سال: 2009

ISSN: 0895-7177

DOI: 10.1016/j.mcm.2008.07.036