The Squeaky wheel: Machine learning for anomaly detection in subjective thermal comfort votes
نویسندگان
چکیده
منابع مشابه
Improved Squeaky Wheel Optimisation for Driver Scheduling
This paper presents a technique called Improved Squeaky Wheel Optimisation (ISWO) for driver scheduling problems. It improves the original Squeaky Wheel Optimisation’s (SWO) effectiveness and execution speed by incorporating two additional steps of Selection and Mutation which implement evolution within a single solution. In the ISWO, a cycle of Analysis-SelectionMutation-Prioritization-Constru...
متن کامل"Squeaky Wheel" Optimization
We describe a general approach to optimization which we term "Squeaky Wheel" Optimization (swo). swo, a greedy algorithm is used to construct a solution which is then analyzed to find the trouble spots, i.e., those elements, that, if improved, axe likely to improve the objective function score. That analysis is used to generate new priorities that determine the order in which the greedy algorit...
متن کاملMachine Learning for Host-based Anomaly Detection
Machine Learning for Host-based Anomaly Detection by Gaurav Tandon Dissertation Advisor: Philip K. Chan, Ph.D. Anomaly detection techniques complement signature based methods for intrusion detection. Machine learning approaches are applied to anomaly detection for automated learning and detection. Traditional host-based anomaly detectors model system call sequences to detect novel attacks. This...
متن کاملA Machine Learning Approach to Anomaly Detection
Much of the intrusion detection research focuses on signature (misuse) detection, where models are built to recognize known attacks. However, signature detection, by its nature, cannot detect novel attacks. Anomaly detection focuses on modeling the normal behavior and identifying significant deviations, which could be novel attacks. In this paper we explore two machine learning methods that can...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Building and Environment
سال: 2019
ISSN: 0360-1323
DOI: 10.1016/j.buildenv.2019.01.050