The Spatial Sign Covariance Matrix and Its Application for Robust Correlation Estimation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust estimation of covariance and its application to portfolio optimization

Outliers can have a considerable influence on the conventional measure of covariance, whichmay lead to amisleading understanding of the comovement between two variables. Both an analytical derivation andMonte Carlo simulations show that the conventional measure of covariance can be heavily influenced in the presence of outliers. This paper proposes an intuitively appealing and easily computable...

متن کامل

Importance-weighted covariance estimation for robust common spatial pattern

Robustness for BCI is usually obtained at the classifier level Non-stationarity is inherent to brain signals We propose to leverage this at the feature extraction level

متن کامل

Multivariate Outlier Detection and Robust Covariance Matrix Estimation

In this article, we present a simple multivariate outlier-detection procedure and a robust estimator for the covariance matrix, based on the use of information obtained from projections onto the directions that maximize and minimize the kurtosis coefŽ cient of the projected data. The properties of this estimator (computational cost, bias) are analyzed and compared with those of other robust est...

متن کامل

Spatial Heteroskedasticity and Autocorrelation Consistent Estimation of Covariance Matrix

This paper considers spatial heteroskedasticity and autocorrelation consistent (spatial HAC) estimation of covariance matrices of parameter estimators. We generalize the spatial HAC estimators introduced by Kelejian and Prucha (2007) to apply to linear and nonlinear spatial models with moment conditions. We establish its consistency, rate of convergence and asymptotic truncated mean squared err...

متن کامل

PAGE: Robust Pattern Guided Estimation of Large Covariance Matrix

We study the problem of estimating large covariance matrices under two types of structural assumptions: (i) The covariance matrix is the summation of a low rank matrix and a sparse matrix, and we have some prior information on the sparsity pattern of the sparse matrix; (ii) The data follow a transelliptical distribution. The former structure regulates the parameter space and has its roots in di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Austrian Journal of Statistics

سال: 2017

ISSN: 1026-597X

DOI: 10.17713/ajs.v46i3-4.667