The space spectral interpolation collocation method for reaction-diffusion systems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Space-time radial basis function collocation method for one-dimensional advection-diffusion problem

The parabolic partial differential equation arises in many application of technologies. In this paper, we propose an approximate method for solution of the heat and advection-diffusion equations using Laguerre-Gaussians radial basis functions (LG-RBFs). The results of numerical experiments are compared with the other radial basis functions and the results of other schemes to confirm the validit...

متن کامل

Real space renormalisation for reaction-diffusion systems

The stationary state of stochastic processes such as reaction-diffusion systems can be related to the ground state of a suitably defined quantum Hamiltonian. Using this analogy, we investigate the applicability of a real space renormalisation group approach, originally developped for quantum spin systems, to interacting particle systems. We apply the technique to an exactly solvable reaction-di...

متن کامل

Fractional Spectral Collocation Method

We develop an exponentially accurate fractional spectral collocation method for solving steady-state and time-dependent fractional PDEs (FPDEs). We first introduce a new family of interpolants, called fractional Lagrange interpolants, which satisfy the Kronecker delta property at collocation points. We perform such a construction following a spectral theory recently developed in [M. Zayernouri ...

متن کامل

Fourier spectral methods for fractional-in-space reaction-diffusion equations

Fractional differential equations are becoming increasingly used as a powerful modelling approach for understanding the many aspects of nonlocality and spatial heterogeneity. However, the numerical approximation of these models is computationally demanding and imposes a number of computational constraints. In this paper, we introduce Fourier spectral methods as an attractive and easy-to-code al...

متن کامل

Semi-Implicit Spectral Collocation Methods for Reaction-Diffusion Equations on Annuli

In this article, we develop numerical schemes for solving stiff reaction-diffusion equations on annuli based on Chebyshev and Fourier spectral spatial discretizations and integrating factor methods for temporal discretizations. Stiffness is resolved by treating the linear diffusion through the use of integrating factors and the nonlinear reaction term implicitly. Root locus curves provide a suc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Thermal Science

سال: 2021

ISSN: 0354-9836,2334-7163

DOI: 10.2298/tsci200402022z