The saturation function of complete partite graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Saturation Function of Complete Partite Graphs

A graph G is called F -saturated if it is F -free but the addition of any missing edge to G creates a copy of F . Let the saturation function sat(n, F ) be the minimum number of edges that an F -saturated graph on n vertices can have. We determine this function asymptotically for every fixed complete partite graph F as n tends to infinity and give some structural information about almost extrem...

متن کامل

Integral complete r-partite graphs

A graph is called integral if all the eigenvalues of its adjacency matrix are integers. In this paper, we give a useful sufficient and necessary condition for complete r-partite graphs to be integral, from which we can construct infinite many new classes of such integral graphs. It is proved that the problem of finding such integral graphs is equivalent to the problem of solving some Diophantin...

متن کامل

Some Algebraic and Combinatorial Properties of the Complete $T$-Partite Graphs

In this paper, we characterize the shellable complete $t$-partite graphs. We also show for these types of graphs the concepts vertex decomposable, shellable and sequentially Cohen-Macaulay are equivalent. Furthermore, we give a combinatorial condition for the Cohen-Macaulay complete $t$-partite graphs.

متن کامل

Spanners of Complete k -Partite Geometric Graphs

We address the following problem: Given a complete k-partite geometric graph K whose vertex set is a set of n points in R, compute a spanner of K that has a “small” stretch factor and “few” edges. We present two algorithms for this problem. The first algorithm computes a (5 + )-spanner of K with O(n) edges in O(n log n) time. The second algorithm computes a (3 + )-spanner of K with O(n log n) e...

متن کامل

Group magicness of complete n-partite graphs

Let A be a non-trivial Abelian group. We call a graph G = (V, E) A-magic if there exists a labeling f : E → A∗ such that the induced vertex set labeling f : V → A, defined by f(v) = ∑ uv∈E f(uv) is a constant map. In this paper, we show that Kk1,k2,...,kn (ki ≥ 2) is A-magic, for all A where |A| ≥ 3.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorics

سال: 2010

ISSN: 2156-3527,2150-959X

DOI: 10.4310/joc.2010.v1.n2.a5