The rigidity conjecture

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bending Fields, Rigidity, and the Bellows Conjecture

Aleksandrov and Pogorelov used bending fields (the velocity fields of continuous isometric deformations) to show infinitesimal rigidity of some classes of surfaces ([2] and [12]). Bending fields (and the rigidity matrix) were also successfully employed in the study of infinitesimal rigidity of polyhedra and tensegrity frameworks (see [7]). We will use these tools to re-derive a previously known...

متن کامل

Rigidity of Graph Joins and Hendrickson's Conjecture

Whiteley [9] gives a complete characterization of the infinitesimal flexes of complete bipartite frameworks. Our work generalizes a specific infinitesimal flex to include joined graphs, a family of graphs that contain the complete bipartite graphs. We use this characterization to identify new families of counterexamples, including infinite families, in R and above to Hendrickson’s conjecture on...

متن کامل

The Combinatorial Rigidity Conjecture Is False for Cubic Polynomials

We show that there exist two cubic polynomials with connected Julia sets which are combinatorially equivalent but not topologically conjugate on their Julia sets. This disproves a conjecture by McMullen from 1995. Introduction and result Let Pd = {z + ad−2z + · · · + a0} ↔ Cd−1 be the space of monic centered polynomials of degree d > 1. Our object is to show that there exists a cubic polynomial...

متن کامل

Rigidity, locally symmetric varieties and the Grothendieck-Katz Conjecture

Using Margulis’s results on lattices in semisimple Lie groups, we prove the GrothendieckKatz p-Curvature Conjecture for many locally symmetric varieties, including HilbertBlumenthal modular varieties and the moduli space of abelian varieties Ag when g > 1.

متن کامل

On the Structure of the Selberg Class, Iii: Sarnak’s Rigidity Conjecture

We further recall that under Selberg orthonormality conjecture, has unique factorization into primitive functions, the only primitive function with a pole at s = 1 is the Riemann zeta function ζ(s), and Fθ(s) is a primitive function if θ ∈R and if F ∈ are primitive and entire (see [4, Section 4]). We say a primitive function F ∈ is normal if θF = 0. Assuming Selberg orthonormality conjecture, w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Indagationes Mathematicae

سال: 2018

ISSN: 0019-3577

DOI: 10.1016/j.indag.2017.08.001