The Research of G-Almost Periodic Point

نویسندگان

چکیده

Firstly, it is introduced that the concepts of G-almost periodic point and G-sequence shadowing property. Then, we discuss dynamical relationship between sequence map {gk}∞k=1 limit g under G-strongly uniform convergence topological group action. We can get (1) Let be converge to where equicontinuous {yk}∞k=1 {gk}∞k=1. If limk → ∞ yk = y, then y an g; (2) are equicontinuous, limsup APG(gk) ⊂ APG(g); (3) g. every gk has G-fine property, These results generalize corresponding given in Ji Zhang [1] make up for lack theory

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of almost maximally almost-periodic groups

Let G be an abelian group. We prove that a group G admits a Hausdorff group topology τ such that the von Neumann radical n(G, τ) of (G, τ) is non-trivial and finite iff G has a non-trivial finite subgroup. If G is a topological group, then n(n(G)) 6= n(G) if and only if n(G) is not dually embedded. In particular, n(n(Z, τ)) = n(Z, τ) for any Hausdorff group topology τ on Z. We shall write our a...

متن کامل

THE REVIEW OF ALMOST PERIODIC SOLUTIONS TO A STOCHASTIC DIERENTIAL EQUATION

This paper proves the existence and uniqueness of quadratic mean almost periodic mild so-lutions for a class of stochastic dierential equations in a real separable Hilbert space. Themain technique is based upon an appropriate composition theorem combined with the Banachcontraction mapping principle and an analytic semigroup of linear operators.  

متن کامل

Almost Periodic Harmonizable Processes

The class of harmonizable processes is a natural extension of the class of stationary processes. This paper provides sufficient conditions for the sample paths of harmonizable processes to be almost periodic uniformly, Stepanov and Besicovitch.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in transdisciplinary engineering

سال: 2022

ISSN: ['2352-751X', '2352-7528']

DOI: https://doi.org/10.3233/atde220523