The Ramsey number for stripes

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Ramsey numbers for stripes and complete graphs 1

Lorimer, P.J. and W. Solomon, The Ramsey numbers for stripes and complete graphs 1, Discrete Mathematics 104 (1992) 91-97. The Ramsey numbers r(mK,, n,Pz, , n,P,), p > 2, are calculated for d m for each j.

متن کامل

The Ramsey Number for Hypergraph

Let Cn denote the 3-uniform hypergraph loose cycle, that is the hypergraph with vertices v1, . . . , vn and edges v1v2v3, v3v4v5, v5v6v7, . . . , vn−1vnv1. We prove that every red-blue colouring of the edges of the complete 3-uniform hypergraph with N vertices contains a monochromatic copy of Cn, where N is asymptotically equal to 5n/4. Moreover this result is (asymptotically) best possible.

متن کامل

Size Multipartite Ramsey Numbers for Small Paths Versus Stripes

For graphs G and H, the size balanced multipartite Ramsey number ) , ( H G m j is defined as the smallest positive integer s such that any arbitrary two red/blue coloring of the graph s j K × forces the appearance of a red G or a blue H . In this paper we find the exact values of the multipartite Ramsey numbers ) , ( 2 3 nK P m j and ) , ( 2 4 nK P m j .

متن کامل

Size multipartite Ramsey numbers for stripes versus small cycles

For simple graphs G1 and G2, the size Ramsey multipartite number mj(G1, G2) is defined as the smallest natural number s such that any arbitrary two coloring of the graph Kj×s using the colors red and blue, contains a red G1 or a blue G2 as subgraphs. In this paper, we obtain the exact values of the size Ramsey numbers mj(nK2, Cm) for j ≥ 2 and m ∈ {3, 4, 5, 6}.

متن کامل

The Size-ramsey Number

The size-Ramsey number of a graph G is the smallest number of edges in a graph Γ with the Ramsey property for G, that is, with the property that any colouring of the edges of Γ with two colours (say) contains a monochromatic copy of G. The study of size-Ramsey numbers was proposed by Erdős, Faudree, Rousseau, and Schelp in 1978, when they investigated the size-Ramsey number of certain classes o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Australian Mathematical Society

سال: 1975

ISSN: 1446-7887,1446-8107

DOI: 10.1017/s1446788700029554