The quadratic Graver cone, quadratic integer minimization, and extensions
نویسندگان
چکیده
منابع مشابه
The Quadratic Graver Cone, Quadratic Integer Minimization, and Extensions
It has been shown in a number of recent papers that Graver bases methods enable to solve linear and nonlinear integer programming problems in variable dimension in polynomial time, resulting in a variety of applications in operations research and statistics. In this article we continue this line of investigation and show that Graver bases also enable tominimize quadratic and higher degree polyn...
متن کاملSolutions to quadratic minimization problems with box and integer constraints
This paper presents a canonical duality theory for solving quadratic minimization problems subjected to either box or integer constraints. Results show that under Gao and Strang’s general global optimality condition, these well-known nonconvex and discrete problems can be converted into smooth concave maximization dual problems over closed convex feasible spaces without duality gap, and can be ...
متن کاملOn the duality of quadratic minimization problems using pseudo inverses
In this paper we consider the minimization of a positive semidefinite quadratic form, having a singular corresponding matrix $H$. We state the dual formulation of the original problem and treat both problems only using the vectors $x in mathcal{N}(H)^perp$ instead of the classical approach of convex optimization techniques such as the null space method. Given this approach and based on t...
متن کاملSDO relaxation approach to fractional quadratic minimization with one quadratic constraint
In this paper, we study the problem of minimizing the ratio of two quadratic functions subject to a quadratic constraint. First we introduce a parametric equivalent of the problem. Then a bisection and a generalized Newton-based method algorithms are presented to solve it. In order to solve the quadratically constrained quadratic minimization problem within both algorithms, a semidefinite optim...
متن کاملA Semidefinite Programming Method for Integer Convex Quadratic Minimization
We consider the NP-hard problem of minimizing a convex quadratic function over the integer lattice Z. We present a semidefinite programming (SDP) method for obtaining a nontrivial lower bound on the optimal value of the problem. By interpreting the solution to the SDP relaxation probabilistically, we obtain a randomized algorithm for finding good suboptimal solutions. The effectiveness of the m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Programming
سال: 2012
ISSN: 0025-5610,1436-4646
DOI: 10.1007/s10107-012-0605-0