منابع مشابه
Compactification of the Prym Map for Non Cyclic Triple Coverings
According to [LO], the Prym variety of any non-cyclic étale triple cover f : Y → X of a smooth curve X of genus 2 is a Jacobian variety of dimension 2. This gives a map from the moduli space of such covers to the moduli space of Jacobian varieties of dimension 2. We extend this map to a proper map Pr of a moduli space S3M̃2 of admissible S3-covers of genus 7 to the moduli space A2 of principally...
متن کاملPrym Varieties of Cyclic Coverings
The Prym map of type (g, n, r) associates to every cyclic covering of degree n of a curve of genus g, ramified at a reduced divisor of degree r, the corresponding Prym variety. We show that the corresponding map of moduli spaces is generically finite in most cases. From this we deduce the dimension of the image of the Prym map.
متن کاملPrym varieties of pairs of coverings
The Prym variety of a pair of coverings is defined roughly speaking as the complement of the Prym variety of one morphism in the Prym variety of another morphism. We show that this definition is symmetric and give conditions when such a Prym variety is isogenous to an ordinary Prym variety or to another such Prym variety. Moreover in order to show that these varieties actually occur we compute ...
متن کاملPolarizations of Prym Varieties of Pairs of Coverings
To any pair of coverings fi : X → Xi, i = 1, 2 of smooth projective curves one can associate an abelian subvariety of the Jacobian JX , the Prym variety P (f1, f2) of the pair (f1, f2). In some cases we can compute the type of the restriction of the canonical principal polarization of JX . We obtain 2 families of Prym-Tyurin varieties of exponent 6.
متن کاملRegular Cyclic Coverings of the Platonic Maps
The Möbius-Kantor map {4 + 4, 3} [CMo, §8.8, 8.9] is a regular orientable map of type {8, 3} and genus 2. It is a 2-sheeted covering of the cube {4, 3}, branched over the centers of its six faces, each of which lifts to an octagonal face. Its (orientation-preserving) automorphism group is isomorphic to GL2(3), a double covering of the automorphism group PGL2(3) ∼= S4 of the cube. The aim of thi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Algebra & Number Theory
سال: 2016
ISSN: 1944-7833,1937-0652
DOI: 10.2140/ant.2016.10.771