منابع مشابه
Primitive Ideal Space of Ultragraph $C^*$-algebras
In this paper, we describe the primitive ideal space of the $C^*$-algebra $C^*(mathcal G)$ associated to the ultragraph $mathcal{G}$. We investigate the structure of the closed ideals of the quotient ultragraph $ C^* $-algebra $C^*left(mathcal G/(H,S)right)$ which contain no nonzero set projections and then we characterize all non gauge-invariant primitive ideals. Our results generalize the ...
متن کاملCountable Primitive Groups
We give a complete characterization of countable primitive groups in several settings including linear groups, subgroups of mapping class groups, groups acting minimally on trees and convergence groups. The latter category includes as a special case Kleinian groups as well as subgroups of word hyperbolic groups. As an application we calculate the Frattini subgroup in many of these settings, oft...
متن کاملDistinguishing Primitive Permutation Groups
Let G be a permutation group acting on a set V . A partition π of V is distinguishing if the only element of G that fixes each cell of π is the identity. The distinguishing number of G is the minimum number of cells in a distinguishing partition. We prove that if G is a primitive permutation group and |V | ≥ 336, its distinguishing number is two.
متن کاملInfinite Primitive Groups.
We give a complete characterization of finitely generated primitive groups in several settings including linear groups, subgroups of mapping class groups, groups acting minimally on trees and convergence groups. The latter category includes as a special case Kleinian groups as well as finitely generated subgroups of word hyperbolic groups. As an application we calculate the Frattini subgroup in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 1974
ISSN: 0022-1236
DOI: 10.1016/0022-1236(74)90036-6