The Polarimetric Detection Optimization Filter and its Statistical Test for Ship Detection

نویسندگان

چکیده

Ship detection via synthetic aperture radar (SAR) has been demonstrated to be very useful as polarimetric information helps discriminate between targets and sea clutter. Among the available detectors, optimal (OPD) theoretically provides best performance under assumption that fully developed speckle hypothesis stands. This study proposes a optimization filter (PDOF). The target clutter ratio (TCR) over variation was maximized using matrix transform derive PDOF. objective function based on instead of vector is optimized obtain effects by combining whitening (PWF) matched (PMF). Subspace form PDOF (SPDOF) also proposed, which gives comparable Assuming Wishart distribution, exact approximate expressions closed-form probability density (PDF) are derived. false alarm (PFA) derived in expression, allows obtaining threshold analytically. Moreover, gamma model extended generalized distribution ( $\text{G}\Gamma \text{D}$ ) adapt complicated resolutions states. Experiments with simulated real data validate correctness effectiveness results. detector achieves most virtual real-world environments, especially cases where statistics not Wishart-distributed.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Extended Sub-look Analysis In Polarimetric SAR Data For Ship Detection

The monitoring of maritime areas with remote sensing is essential for security reasons and also for the conservation of environment. The synthetic aperture radar (SAR) can play an important role in this matter by considering the possibility of acquiring high-resolution images at nighttime and under cloud cover. Recently, the new approaches based on the sub-look analysis for preserving the infor...

متن کامل

Ship detection and characterization using polarimetric SAR

Polarimetric information is investigated for ship detection and characterization at operational satellite SAR incidence angles (20◦ to 60◦). It is shown that among the conventional single channel polarizations (HH, VV, or HV), HV provides the best ship-sea contrast at incidence angles smaller than 50◦. Furthermore, HH polarization permits the best ship-sea contrast at near grazing incidence ang...

متن کامل

islanding detection methods for microgrids

امروزه استفاده از منابع انرژی پراکنده کاربرد وسیعی یافته است . اگر چه این منابع بسیاری از مشکلات شبکه را حل می کنند اما زیاد شدن آنها مسائل فراوانی برای سیستم قدرت به همراه دارد . استفاده از میکروشبکه راه حلی است که علاوه بر استفاده از مزایای منابع انرژی پراکنده برخی از مشکلات ایجاد شده توسط آنها را نیز منتفی می کند . همچنین میکروشبکه ها کیفیت برق و قابلیت اطمینان تامین انرژی مشترکان را افزایش ...

15 صفحه اول

estimating the alpha-stable distribution parameters for ship detection in polarimetric sar images

in synthetic aperture radar (sar) imagery, ship-sea contrast can be significantly improved when the polarimetric information is used, compared with information from a single channel sar. the constant false alarm rate (cfar) detection algorithm based on the alpha-stable (as) distribution model is a descent method for ship detection in sea. the most important step in this method is the parameter ...

متن کامل

Ship Detection in Polarimetric SAR Based on Support Vector Machine

In this study, we propose a Support Vector Machine (SVM) based method for ship detection in polarimetric SAR (POLSAR). Because of similarities of ship and man-made structures on land in scattering mechanisms, land and sea are first segmented by SVM according to polarimetric features and texture features; The SVM-based Recursive Feature Elimination (RFE-SVM) approach is adopted to improve the pe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Geoscience and Remote Sensing

سال: 2022

ISSN: ['0196-2892', '1558-0644']

DOI: https://doi.org/10.1109/tgrs.2021.3055801