The perturbation theory for the Drazin inverse and its applications
نویسندگان
چکیده
منابع مشابه
the algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولEla Perturbation of the Generalized Drazin Inverse
In this paper, we investigate the perturbation of the generalized Drazin invertible matrices and derive explicit generalized Drazin inverse expressions for the perturbations under certain restrictions on the perturbing matrices.
متن کاملAn extension of the perturbation analysis for the Drazin inverse
Let A denote a square complex matrix and let E be a perturbation matrix. The purpose of this paper is to investigate the perturbation of the Drazin inverse when B = A + E satisfies the rank conditions rankA = rankB = rankAB, where r and s denote the indices of A and B, respectively. We will derive an explicit representation of B as a function of A and B −A , for certain positive integers j, k. ...
متن کاملError bounds for a general perturbation of the Drazin inverse
The paper solves a long standing problem of finding error bounds for a general perturbation of the Drazin inverse. The bounds are given in terms of the distance between the matrices together with the distance between their eigenprojections. Estimates using the gap between subspaces are also given. Recent results of several authors, including Castro, Koliha, Straškraba, Wang and Wei can be recov...
متن کاملThe perturbation of the Drazin inverse and oblique projection
K e y w o r d s I n d e x , Drazin inverse, Group inverse, Per turbat ion bound, Core rank. 1. I N T R O D U C T I O N A necessary and sufficient condition for the continuity of the Drazin inverse (to be defined in the next section) was established by Campbell and Meyer in 1975 [1]. They stated the main result: suppose tha t Aj, j = 1, 2 , . . . , and A are n × n matrices such tha t A j ~ A . T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 1997
ISSN: 0024-3795
DOI: 10.1016/s0024-3795(96)00159-0