The Parseval identity for q-Sturm–Liouville problems with transmission conditions
نویسندگان
چکیده
منابع مشابه
Inverse spectral problems for Sturm-Liouville operators with transmission conditions
Abstract: This paper deals with the boundary value problem involving the differential equation -y''+q(x)y=lambda y subject to the standard boundary conditions along with the following discontinuity conditions at a point y(a+0)=a1y(a-0), y'(a+0)=a2y'(a-0)+a3y(a-0). We develop the Hochestadt-Lieberman’s result for Sturm-Lio...
متن کاملA New Identity for Parseval Frames
In this paper we establish a surprising new identity for Parseval frames in a Hilbert space. Several variations of this result are given, including an extension to general frames. Finally, we discuss the derived results.
متن کاملA Fundamental Identity for Parseval Frames
Frames are an essential tool for many emerging applications such as data transmission. Their main advantage is the fact that frames can be designed to be redundant while still providing reconstruction formulas. This makes them robust against noise and losses while allowing freedom in design (see, for example, [5, 10]). Due to their numerical stability, tight frames and Parseval frames are of in...
متن کاملInverse Sturm-Liouville problems with a Spectral Parameter in the Boundary and transmission conditions
In this manuscript, we study the inverse problem for non self-adjoint Sturm--Liouville operator $-D^2+q$ with eigenparameter dependent boundary and discontinuity conditions inside a finite closed interval. By defining a new Hilbert space and using its spectral data of a kind, it is shown that the potential function can be uniquely determined by part of a set of values of eigenfunctions at som...
متن کاملInverse Sturm-Liouville problems with transmission and spectral parameter boundary conditions
This paper deals with the boundary value problem involving the differential equation ell y:=-y''+qy=lambda y, subject to the eigenparameter dependent boundary conditions along with the following discontinuity conditions y(d+0)=a y(d-0), y'(d+0)=ay'(d-0)+b y(d-0). In this problem q(x), d, a , b are real, qin L^2(0,pi), din(0,pi) and lambda is a parameter independent of x. By defining a new...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Difference Equations
سال: 2021
ISSN: 1687-1847
DOI: 10.1186/s13662-021-03408-7